Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling

Vienna, Austria

Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling

Vienna, Austria
SEARCH FILTERS
Time filter
Source Type

Spiesz E.M.,Vienna University of Technology | Spiesz E.M.,TU Eindhoven | Reisinger A.G.,Vienna University of Technology | Roschger P.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Zysset P.K.,University of Bern
Journal of Mechanics in Medicine and Biology | Year: 2014

In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong. © 2014 World Scientific Publishing Company.


Thaler R.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Spitzer S.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Rumpler M.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Fratzl-Zelman N.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | And 4 more authors.
Bone | Year: 2010

Compounds, like beta-aminopropionitrile (bAPN) and homocysteine (hcys), are known to inhibit a stable matrix formation. Osteoblast-synthesized collagen matrix regulates the differentiation of precursor cells into mature osteoblasts. They express lysyl oxidase, an enzyme involved in the collagen cross-linking process. Lately, plasma hcys levels have recently been strongly correlated with fracture in humans. We have previously shown that bAPN not only disturbs collagen cross-links but also affects osteoblastic differentiation in a cell culture system.The aim of the present study was to investigate the effects of bAPN and hcys on collagen cross-links and gene expression at the mRNA level by FTIR and quantitative RT-PCR, respectively. We found that bAPN and hcys down-regulated cell multiplication. While bAPN also down-regulated the metabolic activity of MC3T3-E1 cells, hcys down-regulated it by lower concentrations but up-regulated it by higher; both substances up-regulated alkaline phosphatase activity. The substances increased the ratio of pyr/divalent cross-links of collagen, and down-regulated mRNA expression of lysyl hydroxylase (Plod2) and lysyl oxidase (Lox), genes which play an important role in the formation of a stable matrix. Furthermore, we demonstrate that both substances stimulated the expression of Runx2, an indispensable regulator of osteoblastic differentiation. However, analysis of genome wide mRNA expression suggests that hcys and bAPN have differential effects on genes involved in osteoblastic differentiation and phenotype regulation.The results indicate that although both bAPN and hcys affect collagen cross-link post-translational modifications in a similar manner as far as pyr and divalent cross-links are concerned, they have differential effects on the monitored genes expression at the mRNA level, with hcys exerting a broader effect on the genome wide mRNA expression. © 2009 Elsevier Inc.


Karlic H.,Ludwig Boltzmann Research Institute | Varga F.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling
Clinical Epigenetics | Year: 2011

25- dihydroxyvitamin D3 regulates essential pathways of cellular metabolism and differentiation via its nuclear receptor (VDR). Molecular mechanisms which are known to play key roles in aging and cancer are mediated by complex processes involving epigenetic mechanisms contributing to efficiency of VD-activating CYP27A1 and CYP27B1 or inactivating CYP24 enzymes as well as VDR which binds to specific genomic sequences (VD response elements or VDREs). Activity of VDR can be modulated epigenetically by histone acetylation. It co-operates with other nuclear receptors which are influenced by histone acetyl transferases (HATs) as well as several types of histone deacetylases (HDACs). HDAC inhibitors (HDACi) and/or demethylating drugs may contribute to normalization of VD metabolism. Studies link VD signaling through the VDR directly to distinct molecular mechanisms of both HAT activity and the sirtuin class of HDACs (SIRT1) as well as the forkhead transcription factors thus contributing to elucidate complex epigenetic mechanisms for cancer preventive actions of VD. © Springer-Verlag 2011.


Misof B.M.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Moreira C.A.,Federal University of Paraná | Moreira C.A.,Laboratory Pro Bone Histomorphometry Division | Klaushofer K.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Roschger P.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling
Current Osteoporosis Reports | Year: 2016

Chronic obstructive pulmonary disease (COPD) is associated with numerous comorbidities, among which osteoporosis is of high significance. Low bone mass and the occurrence of fragility fractures is a common finding in patients with COPD. Typical risk factors related directly or indirectly to these skeletal complications include systemic inflammation, tobacco smoking, vitamin D deficiency, and treatment with oral or inhaled corticosteroids. In particular, treatment with glucocorticoids appears to be a strong contributor to bone changes in COPD, but does not fully account for all skeletal complications. Additional to the effects of COPD on bone mass, there is evidence for COPD-related changes in bone microstructure and material properties. This review summarizes the clinical outcomes of low bone mass and increased fracture risk, and reports on recent observations in bone tissue and material in COPD patients. © 2016, Springer Science+Business Media New York.


Fahiminiya S.,McGill University | Majewski J.,McGill University | Roughley P.,McGill University | Roschger P.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | And 2 more authors.
Bone | Year: 2013

Juvenile osteoporosis (JO) is characterized by bone fragility during development, low bone mass and absence of extraskeletal features. Heterozygous loss-of-function mutations in LRP5 have been found in a few patients, but bone tissue and bone material abnormalities associated with such mutations have not been determined. Here we report on a 6-year-old boy who presented with a history of seven low-energy long-bone fractures starting at 19. months of age and absence of extraskeletal involvement. Spine radiographs revealed multiple vertebral compression fractures. Despite tall stature (95th percentile), lumbar spine areal bone mineral density was low (z-score. = -. 3.2). Trabecular volumetric bone mineral density, measured by peripheral quantitative computed tomography at the distal radius, was low (z-score. = -. 5.1), but cortical thickness at the radial diaphysis was normal. Iliac bone histomorphometry demonstrated low bone formation activity in trabecular but not in cortical bone. Quantitative backscattered electron imaging showed normal material bone density in trabecular bone, but elevated results in the cortex. Whole-exome sequencing revealed a heterozygous insertion of a nucleotide in exon 12 of LRP5. This mutation had previously been reported in another JO patient and had been shown to lead to nonsense-mediated decay. Thus, heterozygous loss-of-function mutations in LRP5 can be associated with a bone formation deficit that affects mostly the trabecular compartment and can result in bone fragility during the first years of life. © 2013 Elsevier Inc.


Varga F.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Rumpler M.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Zoehrer R.,Flinders University | Turecek C.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | And 4 more authors.
Biochemical and Biophysical Research Communications | Year: 2010

Thyroid hormones (T3,. T4) have a broad range of effects on bone, however, its role in determining the quality of bone matrix is poorly understood. In-vitro, the immortalized mouse osteoblast-like cell line MC3T3-E1 forms a tissue like structure, consisting of several cell layers, whose formation is affected by T3 significantly. In this culture system, we investigated the effects of T3 on cell multiplication, collagen synthesis, expression of genes related to the collagen cross-linking process and on the formation of cross-links. T3 compared to controls modulated cell multiplication, up-regulated collagen synthesis time and dose dependently, and stimulated protein synthesis. T3 increased mRNA expressions of procollagen-lysine-1,2-oxoglutarate 5-dioxygenase 2 (Plod2) and of lysyloxidase (Lox), both genes involved in post-translational modification of collagen. Moreover, it stimulated mRNA expression of bone morphogenetic protein 1 (Bmp1), the processing enzyme of the lysyloxidase-precursor and of procollagen. An increase in the collagen cross-link-ratio Pyr/deDHLNL indicates, that T3 modulated cross-link maturation in the MC3T3-E1 culture system. These results demonstrate that T3 directly regulates collagen synthesis and collagen cross-linking by up-regulating gene expression of the specific cross-link related enzymes, and underlines the importance of a well-balanced concentration of thyroid hormones for maintenance of bone quality. © 2010 Elsevier Inc.


Husar-Memmer E.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling
Current rheumatology reports | Year: 2014

Hereditary hemochromatosis is a frequent disease in Caucasian populations. It leads to progressive iron overload in a variety of organs. The most common cause is the C282Y homozygous mutation in the HFE gene. The classical triad of skin hyperpigmentation, diabetes, and liver cirrhosis is nowadays rare but musculoskeletal symptoms are common in HFE-related hemochromatosis. Typically the second and third metacarpophalangeal joints, and the wrist, hip, and ankle joints are affected. Clinical symptoms include osteoarthritis-like symptoms, pseudogout attacks, and synovitis sometimes resembling rheumatoid arthritis. Radiographs show degenerative changes with joint space narrowing, osteophytes, and subchondral cysts. Chondrocalcinosis in the wrist and knee joints is seen in up to 50 % of patients. Although most other organ manifestations regress during phlebotomy, musculoskeletal symptoms often persist or even become worse. Importantly, patients are at an increased risk of severe large-joint arthritis necessitating joint replacement surgery. Therefore, future research should focus on the pathogenesis and treatment options for HH arthropathy.


Fahiminiya S.,McGill University | Al-Jallad H.,Shriners Hospital for Children | Majewski J.,McGill University | Palomo T.,Shriners Hospital for Children | And 8 more authors.
Human Molecular Genetics | Year: 2015

We had previously published the clinical characteristics of a bone fragility disorder in children that was characterized mainly by lower extremity fractures and a mineralization defect in bone tissue but not on the growth plate level. We have now performed whole-exome sequencing on four unrelated individuals with this phenotype. Three individuals were homozygous for a nucleotide change in BMP1, affecting the polyadenylation signal of the transcript that codes for the short isoform of BMP1 (BMP1-1) (c.*241T>C). In skin fibroblasts of these individuals, we found low levels of BMP1-1 transcript and protein. The fourth individual was compound heterozygous for the c.*241T>C variant in BMP1-1 and a variant in BMP1 exon 15 (c.2107G>C) that affected splicing in both BMP1-1 and the long isoform of BMP1 (BMP1-3). Both the homozygous 3'UTR variant and the compound heterozygous variants were associated with impaired procollagen type I C-propeptide cleavage, as the amount of free C-propeptide in the supernatant of skin fibroblasts was less than in controls. Peripheral quantitative computed tomography showed that all individuals had elevated volumetric cortical bone mineral density. Assessment of iliac bone samples by histomorphometry and quantitative backscattered electron imaging indicated that the onset of mineralization at bone formation sites was delayed, but that mineralized matrix was hypermineralized. These results show that isolated lack of BMP1-1 causes bone fragility in children. © The Author 2014.


Pemmer B.,Vienna University of Technology | Roschger A.,Vienna University of Technology | Roschger A.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling | Wastl A.,Vienna University of Technology | And 8 more authors.
Bone | Year: 2013

Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue.Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013 The Authors.


PubMed | University of Veterinary Medicine Vienna and Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling
Type: Journal Article | Journal: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research | Year: 2016

Fibroblast growth factor-23 (Fgf23) is a bone-derived hormone, suppressing phosphate reabsorption and vitamin D hormone (1,25(OH)2 D3 ) production in the kidney. It has long been an enigma why lack of Fgf23 or of Klotho, the coreceptor for Fgf23, leads to severe impairment in bone mineralization despite the presence of hypercalcemia and hyperphosphatemia. Using Fgf23(-/-) or Klotho(-/-) mice together with compound mutant mice lacking both Fgf23 or Klotho and a functioning vitamin D receptor, we show that in Klotho(-/-) mice the mineralization defect is solely driven by 1,25(OH)2 D3 -induced upregulation of the mineralization-inhibiting molecules osteopontin and pyrophosphate in bone. In Fgf23(-/-) mice, the mineralization defect has two components, a 1,25(OH)2 D3 -driven component similar to Klotho(-/-) mice and a component driven by lack of Fgf23, causing additional accumulation of osteopontin. We found that FGF23 regulates osteopontin secretion indirectly by suppressing alkaline phosphatase transcription and phosphate production in osteoblastic cells, acting through FGF receptor-3 in a Klotho-independent manner. Hence, FGF23 secreted from osteocytes may form an autocrine/paracrine feedback loop for the local fine-tuning of bone mineralization.

Loading Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling collaborators
Loading Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of and Trauma Center Meidling collaborators