Loreal Research And Innovation

Aulnay-sous-Bois, France

Loreal Research And Innovation

Aulnay-sous-Bois, France
Time filter
Source Type

Seite S.,Roche Holding AG | Zelenkova H.,DOST | Martin R.,Loreal Research And Innovation
Clinical, Cosmetic and Investigational Dermatology | Year: 2017

Background: We speculated that an emollient supplemented with a biomass of nonpathogenic bacteria such as Vitreoscilla filiformis (Vf), grown in a medium containing thermal spring water (LRP-TSW); (LRP-Vitreoscilla filiformis biomass [LRP-VFB]), could have a beneficial effect for patients with atopic dermatitis (AD). Patients and methods: This double-blind, randomized, comparative study was conducted with 60 patients with moderate AD. Before starting the study, participants were pretreated for 15 days with drug therapy to improve their SCORing Atopic Dermatitis (SCORAD) by at least 25%. On Day 1, the eligible patients were randomized to either the emollient containing LRPVFB associated with mannose (Product A) or another emollient (product B) and were treated twice daily for 1 month. Recurrence of flare-ups and microbial communities were characterized from swabs taken at Day 1 and Day 28, under axenic conditions, from affected (AF) and proximal unaffected (UAF) skin areas. Results: At Day 1, the average SCORAD of each group and the microbial communities of AF and UAF areas for each participant were similar. One month after the end of the therapeutic treatment (Day 28), the average evolution of SCORAD at Day 28 compared to Day 1 of patients treated with product A was significantly lower than that of the patients treated with product B. A significantly increased level of Xanthomonas genus was noticed in the group treated with product A (versus product B). On the other hand, the level of Staphylococcus genus increased between Day 1 and Day 28 in the group treated with product B, but not in the group treated with product A. Interestingly, these differences were more pronounced for patients in relapse, and the associated SCORAD worsening was less in the group treated with product A versus the group treated with product B. Conclusion: This study demonstrated that a specific emollient containing a biomass of nonpathogenic bacteria Vf grown in a medium containing TSW and associated with a selected carbon source is able to normalize skin microbiota and significantly reduce the number and severity of flare-ups compared with another emollient. © 2017 Seité et al.

Ahmed T.,University College London | Nash A.,University College London | Clark K.E.N.,University College London | Ghibaudo M.,Loreal Research And Innovation | And 6 more authors.
International Journal of Nanomedicine | Year: 2017

The extracellular matrix of the dermis is a complex, dynamic system with the various dermal components undergoing individual physiologic changes as we age. Age-related changes in the physical properties of collagen were investigated in particular by measuring the effect of aging, most likely due to the accumulation of advanced glycation end product (AGE) cross-links, on the nanomechanical properties of the collagen fibril using atomic force microscope nano-indentation. An age-related decrease in the Young’s modulus of the transverse fibril was observed (from 8.11 to 4.19 GPa in young to old volunteers, respectively, P<0.001). It is proposed that this is due to a change in the fibril density caused by age-related differences in water retention within the fibrils. The new collagen–water interaction mechanism was verified by electronic structure calculations, showing it to be energetically feasible. © 2017 Ahmed et al.

Aimanianda V.,Institute Pasteur Paris | Simenel C.,Institute Pasteur Paris | Garnaud C.,Institute Pasteur Paris | Garnaud C.,Grenoble University Hospital Center | And 11 more authors.
mBio | Year: 2017

β-(1,3)-Glucan, the major fungal cell wall component, ramifies through β-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify β-(1,6)-branching on β-(1,3)-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-(14C)glucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, the bgl2Δ and gas1Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced β-(1,6)-branching on the β-(1,3)-oligomers following its β-(1,3)-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear β-(1,3)-oligomers as well as Bgl2p-catalyzed products [short β-(1,3)-oligomers linked by a linear β-(1,6)-linkage]. The double S. cerevisiae gas1Δ bgl2Δ mutant showed a drastically sick phenotype. An ScGas1p ortholog, Gel4p from Aspergillus fumigatus, also showed dual β-(1,3)- glucan elongating and branching activity. Both ScGas1p and A. fumigatus Gel4p sequences are endowed with a carbohydrate binding module (CBM), CBM43, which was required for the dual β-(1,3)-glucan elongating and branching activity. Our report unravels the β-(1,3)-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life. IMPORTANCE The fungal cell wall is essential for growth, morphogenesis, protection, and survival. In spite of being essential, cell wall biogenesis, especially the core β-(1,3)-glucan ramification, is poorly understood; the ramified β-(1,3)-glucan interconnects other cell wall components. Once linear β-(1,3)-glucan is synthesized by plasma membrane-bound glucan synthase, the subsequent event is its branching event in the cell wall space. Using Saccharomyces cerevisiae as a model, we identified GH72 and GH17 family glycosyltransferases, Gas1p and Bgl2p, respectively, involved in the β-(1,3)-glucan branching. The sick phenotype of the double Scgas1Δ bgl2Δ mutant suggested that β-(1,3)-glucan branching is essential. In addition to ScGas1p, GH72 family ScGas2p and Aspergillus fumigatus Gel4p, having CBM43 in their sequences, showed dual β-(1,3)-glucan elongating and branching activity. Our report identifies the fungal cell wall β-(1,3)-glucan branching mechanism. The essentiality of β-(1,3)-glucan branching suggests that enzymes involved in the glucan branching could be exploited as antifungal targets. © 2017 Aimanianda et al.

Cavusoglu N.,Loreal Research And Innovation | Delattre C.,Loreal Research And Innovation | Donovan M.,Loreal Research And Innovation | El Rawadi C.,Loreal Research And Innovation | And 2 more authors.
Archives of Dermatological Research | Year: 2016

The study aimed at detecting differentially expressed proteins in the stratum corneum of dandruff versus non-dandruff scalps to better understand dandruff aetiology. iTRAQ-based quantitative proteomic analysis revealed a total of 68 differentially expressed biomarkers. A detailed analysis of their known physiological functions provided new insights into the affected metabolic pathways of a dandruff scalp. Dandruff scalp showed (1) profound changes in the expression and maturation of structural and epidermal differentiation related proteins, that are responsible for the integrity of the skin, (2) altered relevant factors that regulate skin hydration, and (3) an imbalanced physiological protease–protease inhibitor ratio. Stratum corneum proteins with antimicrobial activity, mainly those derived from sweat and sebaceous glands were also found modified. Comparing our data with those reported for atopic dermatitis revealed that about 50 % of the differentially expressed proteins in the superficial layers of the stratum corneum from dandruff and atopic dermatitis are identical. © 2016 Springer-Verlag Berlin Heidelberg

Provin C.,University of Tokyo | Nicolas A.,Nihon l'Oreal K.K. | Gregoire S.,Loreal Research And Innovation | Fujii T.,University of Tokyo
Pharmaceutical Research | Year: 2015

Purpose: Percutaneous absorption assays of molecules for pharmaceutical and cosmetology purposes are important to determine the bioavailability of new compounds, once topically applied. The current method of choice is to measure the rate of diffusion through excised human skin using a diffusion cell. This method however entails significant drawbacks such as scarce availability and poor reproducibility of the sample, low sampling rate, and tedious assay setup.Methods: The objective of the present work is to propose an alternative method that overcomes these issues by integrating an experimental model of the skin (artificial stratum corneum) and online optical sensors into a microfluidic device.Results: The measurement of the diffusion profile followed by the calculation of the permeability coefficients and time lag were performed on seven different molecules and obtained data positively fit with those available from literature on human skin penetration. The coating of the lipid mixture to generate the artificial stratum corneum also proved robust and reproducible. The results show that the proposed device is able to give fast, real-time, accurate, and reproducible data in a user-friendly manner, and can be produced at a large scale.Conclusion: These assets should help both the cosmetics and pharmaceutics fields where the skin is the target or a pathway of a formulated compound, by allowing more candidate molecules or formulations to be assessed during the various stages of their development. © 2015 Springer Science+Business Media New York

Sextius P.,Loreal Research And Innovation | Marionnet C.,Loreal Research And Innovation | Tacheau C.,Loreal Research And Innovation | Bon F.-X.,ARIC | And 5 more authors.
Archives of Dermatological Research | Year: 2015

With aging, epidermal homeostasis and barrier function are disrupted. In a previous study, we analyzed the transcriptomic response of young skin epidermis after stratum corneum removal, and obtained a global kinetic view of the molecular processes involved in barrier function recovery. In the present study, the same analysis was performed in aged skin in order to better understand the defects which occur with aging. Thirty healthy male volunteers (67 ± 4 years old) were involved. Tape-strippings were carried out on the inner face of one forearm, the other unstripped forearm serving as control. At 2, 6, 18, 30 and 72 h after stripping, TEWL measurements were taken, and epidermis samples were collected. Total RNA was extracted and analyzed using DermArray® cDNA microarrays. The results highlighted that barrier function recovery and overall kinetics of gene expression were delayed following stripping in aged skin. Indeed, the TEWL measurements showed that barrier recovery in the young group appeared to be dramatically significant during the overall kinetics, while there were no significant evolution in the aged group until 30 h. Moreover, gene expression analysis revealed that the number of modulated genes following tape stripping increased as a function of time and reached a peak at 6 h after tape stripping in young skin, while it was at 30 h in aged skin, showing that cellular activity linked to the repair process may be engaged earlier in young epidermis than in aged epidermis. A total of 370 genes were modulated in the young group. In the aged group, 382 genes were modulated, whose 184 were also modulated in the young group. Only eight genes that were modulated in both groups were significantly differently modulated. The characterization of these genes into 15 functional families helped to draw a scenario for the aging process affecting epidermal repair capacity. © 2015, The Author(s).

Jourdain R.,Loreal Research And Innovation | Vingler P.,Loreal Research And Innovation | el Rawadi C.,Loreal Research And Innovation | Pouradier F.,Loreal Research And Innovation | And 3 more authors.
Archives of Dermatological Research | Year: 2016

Dandruff is a common but complex disorder with three major contributing factors: (1) individual predisposition, (2) scalp sebum and (3) Malassezia yeast colonization. To obtain further insights into the role of sebum in dandruff biogenesis, we analyzed scalp lipid species in a cohort of ten dandruff-free (control) and ten dandruff-afflicted volunteers by gas chromatography coupled to mass spectrometry. Lipid peroxidation levels and biochemical markers of oxidative stress were also assessed. Squalene, a major sebum component, was significantly more peroxidized in dandruff-affected scalps, resulting in significantly higher ratios of squalene monohydroperoxide (SQOOH)/squalene. This was observed when comparing dandruff-affected zones of dandruff subjects to both their non-affected zones and control subjects. In addition, other biomarkers such as malondialdehyde indicated that oxidative stress levels were raised on dandruff scalps. Surprisingly, differences regarding either free or bound fatty acids were fairly rare and minor. Certain novel findings, especially squalene peroxidation levels, were then confirmed in a validation cohort of 24 dandruff-affected subjects, by comparing dandruff-affected and non-dandruff zones from the same individuals. As SQOOH can induce both keratinocyte inflammatory responses and hyperproliferation in vitro, we hypothesized that increased SQOOH could be considered as a new etiological dandruff factor via its ability to impair scalp barrier function. Our results also indicated that Malassezia could be a major source of squalene peroxidation on the scalp. © 2016, The Author(s).

La Rocca M.V.,Chimie Paristech | La Rocca M.V.,University of Insubria | Rutkowski M.,Chimie Paristech | Ringeissen S.,Loreal Research And Innovation | And 5 more authors.
Journal of Molecular Modeling | Year: 2016

The overall objective was to identify an accurate computational electronic method to virtually screen phenolic compounds through their antioxidant and free-radical scavenging activity. The impact of a key parameter of the density functional theory (DFT) approach was studied. Performances of the 21 most commonly used exchange-correlation functionals are thus detailed in the evaluation of the main energetic parameters related to the activities of two prototype antioxidants, namely quercetin and edaravone, is reported. These functionals have been chosen among those belonging to three different families of hybrid functionals, namely global, range separated, and double hybrids. Other computational parameters have also been considered, such as basis set and solvent effects. The selected parameters, namely bond dissociation enthalpy (BDE), ionization potential (IP), and proton dissociation enthalpy (PDE) allow a mechanistic evaluation of the antioxidant activities of free radical scavengers. Our results show that all the selected functionals provide a coherent picture of these properties, predicting the same order of BDEs and PDEs. However, with respect to the reference values, the errors found at CBS-Q3 level significantly vary with the functional. Although it is difficult to evidence a global trend from the reported data, it clearly appears that LC-ωPBE, M05-2X, and M06-2X are the most suitable approaches for the considered properties, giving the lowest cumulative mean absolute errors. These methods are therefore suggested for an accurate and fast evaluation of energetic parameters related to an antioxidant activity via free radical scavenging. © 2016, Springer-Verlag Berlin Heidelberg.

Hallegot P.,Loreal Research And Innovation | Hussler G.,Loreal Research And Innovation | Jeanne-Rose V.,Loreal Research And Innovation | Leroy F.,Loreal Research And Innovation | And 2 more authors.
Journal of Sol-Gel Science and Technology | Year: 2016

Abstract: The human hair presents a fibrillar structure, composed of keratinized cells, covered by a wall of cellular scales, piled up like tiles on a roof. Substantial variations in diameter exist in the population. Fine hair is a major concern for women and men. Hair may lack volume and lack of firmness and bounce. Hairstyles lack volume and hold, and hair is flat and difficult to style. To strengthen the hair structure, penetration of materials, like polymers, could be a realistic approach. The hair cuticle barrier, however, prevents big molecules to penetrate. To overcome this hurdle, reactive sol–gel have been studied, leading to the identification of the 3-aminopropyltriethoxysilane. Smaller than polymers, this silane has been studied on the key question of the penetration. After having understood its potential in penetration, the effect on mechanical transformation has been studied. The objective of this work was also to evaluate the efficacy of the 3-aminopropyltriethoxysilane, formulated in products for fine hair to respond to the needs of both feminine or masculine head hair. Several studies and techniques were used to determine the impact of the optimal efficacy of 3-aminopropyltriethoxysilane by provisory transforming hair fiber. Graphical Abstract: To improve hair resistance, reactive sol–gels have been studied, leading to the identification of the 3-aminopropyltriethoxysilane. After treatment, material is detected inside the fiber. The resistance of material to shampoos leads to think that the molecules reacted to oligomers. Several studies and techniques were used to determine the impact of the optimal efficacy of 3-aminopropyltriethoxysilane. The three-point bending measurements showed that 3-aminopropyltriethoxysilane improves the mechanical resistance of dry hair. In addition, the morphology of the surface revealed an absence of a perceptible coating. These results explain the effect of body given to fine hair, and its remarkable natural touch. Other experiments have been done to elucidate the intimate effect of material on the complex structure of hair.[Figure not available: see fulltext.] © 2016 The Author(s)

Girardeau-Hubert S.,Loreal Research And Innovation | Teluob S.,Loreal Research And Innovation | Pageon H.,Loreal Research And Innovation | Asselineau D.,Loreal Research And Innovation
European Journal of Dermatology | Year: 2015

Background: Clinical studies on dermal fillers have essentially focused upon visible improvement of skin quality and any eventual side effects, whereas very little is known about their detailed biological effects. Objectives: New skin equivalent models were created to investigate the biological impact of hyaluronic acid (HA) fillers on the dermal compartment in vitro. Materials and methods: Two different reconstructed skin models were developed to incorporate HA within the collagen fibers. In the mixed model, HA was distributed throughout the whole collagen gel whereas the HA was concentrated in the center of collagen gel in the inclusion model. Results: A comparison of the addition of fillers in two models of reconstructed skin has permitted a better understanding of the biological impact of HA fillers. Protein profiling of supernatants from both models suggested a regulation of MMP-1 secretion by fibroblasts as a function of HA volume, distribution in the dermis and degree of cross-linking. Immunostaining of the inclusion model revealed increased production of type I and III procollagens close to the cross-linked HA. Fibroblasts located in this area showed a fusiform morphology as well as an increase in α-smooth actin expression. The observed increase in collagen production may thus result in part from tension in fibroblasts surrounding the cross-linked HA. Conclusion: The inclusion reconstructed skin model, as compared to the mixed model, presented here, appears to be a useful tool for investigating the properties of various fillers in vitro and closer to the in vivo situation; our results show that HA fillers promote in vitro remodeling of the dermis by fibroblasts. © 2015, John Libbey Eurotext. All rights reserved.

Loading Loreal Research And Innovation collaborators
Loading Loreal Research And Innovation collaborators