Time filter

Source Type

Ningbo, China

Gao G.,Central Hospital of Fengxian District | Kun T.,Changning Central Hospital | Sheng Y.,Central Hospital of Fengxian District | Qian M.,Central Hospital of Fengxian District | And 7 more authors.
Molecular Biology Reports | Year: 2013

SGT1 (suppressor of G2 allele of Skp1) plays a role in various cellular processes including kinetochore assembly and protein ubiquitination by interacting with Skp1, a component of SCF E3 ligase complex. However, the function of SGT1 in cancer is largely unknown. Here, we showed that SGT1 was over-expressed in gastric cancer tissues and silencing of SGT1 by siRNAs significantly inhibited the growth and colony formation of gastric cancer cells. We further showed that SGT1 could regulate Akt signaling pathway by modulating Akt ser473 phosphorylation status. Moreover, we found that SGT1 was able to regulate the stability of PHLPP1, which is the direct phosphatase for Akt ser473 phosphorylation. Immunoprecipitation assay revealed that SGT1 could enhance the binding between PHLPP1 and beta-TrCP which has been documented to be able to target PHLPP1 for destruction. Decreased PHLPP1 in SGT1 over-expressed gastric cancer cells failed to dephosphorylate Akt and resulted in increased Akt ser473 phosphorylation and amplified downstream Akt signaling. Thus, our data revealed a previously uncovered role of SGT1 in gastric cancer development, and suggested that SGT1 could be a promising anti-cancer target to against gastric cancer. © 2013 Springer Science+Business Media Dordrecht.

Na X.-Y.,Longsai Hospital | Liu Z.-Y.,Longsai Hospital | Ren P.-P.,Longsai Hospital | Yu R.,Ningbo University | Shang X.-S.,Longsai Hospital
International Journal of Clinical and Experimental Medicine | Year: 2015

Long non-coding RNAs (lncRNAs) UCA1 have been shown to paly an important regulatory roles in cancer biology, and UCA1 dysfunction is related to TNM stage, metastasis and postoperative survival in several cancers. However, the biological role and clinical significance of UCA1 in the carcinogenesis of prostate cancer (PC) remain largely unclear. Herein, we found that UCA1 was abnormally upregulated in tumor tissues from PC patients, and patients with high UCA1 levels had a significantly poorer prognosis. Intriguingly, the mRNA and protein levels of KLF4 were significantly increased in tumor tissues, which was highly correlated to UCA1 levels. Moreover, UCA1 depletion inhibited the growth and induced apoptosis in PC3 and LNCaP cell lines. In addition, UCA1 loss-of-function could decrease KLF4 expression, subsequently, the downregulation of KRT6 and KRT13. Taken together, our study indicated that UCA1 had a crucial role in the tumorigenesis of PC. Moreover, UCA1 loss-of-function inhibited cell proliferation and induced cell apoptosis, at least partially, through inactivation KLF4-KRT6/13 cascade. © 2015, E-Century Publishing Corporation. All rights reserved.

Discover hidden collaborations