Time filter

Source Type

Harley, United Kingdom

Tosti E.,Stazione Zoologica Anton Dohrn | Menezo Y.,London Fertility Associates
Human Reproduction Update | Year: 2016

Background: The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and Rationale: The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search Methods: We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes: Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic changes in gamete morphology and behavior, the regulatory molecules triggering gamete activation and the intracellular ions and second messengers involved in active metabolic pathways in different species. Recent scientific advances suggest that artificial gamete activation may represent a novel technique to improve human IVF outcomes, but this approach requires caution. Wider Implications: Although controversial, manipulation of gamete activation represents a promising tool for ameliorating the fertilization rate in assisted reproductive technologies. A better knowledge of mechanisms that transform the quiescent oocyte into a pluripotent cell may also provide new insights for the clinical use of stem cells. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

Ohl J.,CHU de Strasbourg | De Mouzon J.,University of Paris Descartes | Benoussaidh A.,Laboratoires Genevrier | Gouze J.N.,Laboratoires Genevrier | And 3 more authors.
Cellular and Molecular Biology | Year: 2015

Despite excellent published results, the lack of well-designed, multicentre, randomized clinical trials results in an absence of general consensus on the efficacy of autologous endometrial cells coculture (AECC) in Assisted Reproductive Technology (ART). An open, multicentre, prospective, randomized controlled trial was designed to compare the pregnancy rate (PR) after the transfer of one blastocyst on day 5 after AECC to the transfer of one embryo on day 3 (control group). Patients were women aged 18 to 36, undergoing an ART cycle with no more than 1 embryo transfer failure. Sample size was calculated at 720 for a superiority trial involving an intermediate analysis at 300 patients. We present the results of the intermediate analysis that resulted in the study ending considering the observed difference. Three hundred thirty nine patients were randomized: 170 in the AECC group and 169 in the control group. The clinical PR per transfer was 53.4% with AECC and 37.3% in the control group (p=0.025). The quality of embryos was improved with AECC. These results suggest that implementation of the AECC technique to a large number of In-Vitro Fertilization (IVF) centres could lead to a substantial improvement in the proportion of successful assisted reproduction. The study was supported by the Laboratoires Genévrier, France. © 2015. All rights reserved.

Dale B.,Center for Assisted Fertilization | Menezo Y.,London Fertility Associates | Coppola G.,Center for Assisted Fertilization
Journal of Assisted Reproduction and Genetics | Year: 2015

Morphological selection techniques of gametes and embryos are of current interest to clinical practice in ART. Although intracytoplasmic morphologically selected sperm injection (IMSI), time lapse imaging morphometry (TLIM) or quantification of chromosome numbers (PGS) are potentially useful in research, they have not been shown to be of statistically predictive value and, thus, have only limited clinical usefulness. We make the point that morphological markers alone cannot predict the success of the early embryo, which depends on the correct orchestration of a myriad of physiological and biochemical activation events that progress independently of the maternal or zygotic genome. Since previous attempts to identify metabolic markers for embryo quality have failed and there is no evidence that the intrinsic nature of gametes and embryos can be improved in the laboratory, embryologists can only minimize environmental or operator induced damage while these cells are manipulated ex vivo. © 2014, Springer Science+Business Media New York.

Dattilo M.,Parthenogen | Giuseppe D.,ASL Bari | Ettore C.,ASL Bari | Menezo Y.,London Fertility Associates
Journal of Assisted Reproduction and Genetics | Year: 2016

Oxidative damage triggers extensive repair in gametes and thereafter in the zygote but it results in clinically relevant damage when affecting the maturation of the gametes chromatin, i.e. padlocking and epigenetic marking. It associates with defective DNA methylation and/or with oxidation of the methyl marks leading to derangement of gamete epigenetics, defects of chromatin condensation and aneuploidy. A proper feed to the one carbon cycle has the potential to stimulate the endogenous antioxidant defences, i.e. gluthatione synthesis, and to activate compensative homeostatic mechanisms restoring both the oxy-redox balance and DNA methylation, which are indeed strictly cross-regulated. This has been shown to produce measurable clinical improvements of male reproductive potential in pilot studies herein summarised. However, the effects of dietary habits and of supplementations are variable according to the individual genetic substrate, as genetic variants of several of the concerned enzymes occur with high frequency. Individual risk assessments and personalised interventions are still difficult to implement, in the meantime, a very varied diet may facilitate metabolic compensation in the majority of the cases. This review aims to report on the mechanisms of damage, on the opportunities to modulate the physiologic oxy-redox homeostasis by means of a varied diet or dietary supplements and on the open issues related to the genetic variability of the population. © 2016 The Author(s)

Menezo Y.,London Fertility Associates | Menezo Y.,Laboratoire Clement | Evenson D.,South Dakota State University | Cohen M.,Procrelys | And 2 more authors.
Advances in Experimental Medicine and Biology | Year: 2014

According to worldwide statistics, between one in four and one in five couples have fertility problems. These problems are equally distributed between males and females. Modern lifestyle has obviously increased these problems: endocrine-disrupting chemicals, such as plastic polymer catalysts, alkylphenols, phthalates and so on, and cosmetic additives seem to be strongly involved in this fertility problem. Many of these compounds increase oxidative stress (OS) and thus impair spermatogenesis. The oocyte has only a finite capacity, decreasing with maternal age, to repair sperm-borne decays. To decrease this DNA repair burden, reducing the sperm DNA damages linked to OS is tempting. Antioxidant vitamins are often given haphazardly; they are not very efficient and potentially detrimental. A detailed analysis of the sperm nucleus is mandatory (DNA fragmentation or lack of nuclear condensation) prior to any treatment. Here we discuss new concepts in OS and the corresponding therapeutic approaches. © 2014 Springer Science+Business Media New York.

Discover hidden collaborations