Time filter

Source Type

Freiburg, Germany

Zotz J.S.,RWTH Aachen | Wolbing F.,TU Munich | Lassnig C.,University of Veterinary Medicine Vienna | Kauffmann M.,RWTH Aachen | And 8 more authors.
FASEB Journal | Year: 2016

Antigen-induced mast cell (MC) activation via cross-linking of IgE-bound high-affinity receptors for IgE (FcϵRI) underlies type I allergy and anaphylactic shock. Comprehensive knowledge of FcϵRI regulation is thus required. We have identified a functional interaction between FcϵRI and CD13 in murine MCs. Antigen-triggered activation of IgE-loaded FcϵRI results in cocapping and cointernalization of CD13 and equivalent internalization rates of up to 40%. Cointernalization is not unspecific, because ligand-driven KIT internalization is not accompanied by CD13 internalization. Moreover, antibody-mediated cross-linking of CD13 causes IL-6 production in an FcϵRI-dependent manner. These data are indicative of a functional interaction between FcϵRI and CD13 on MCs. To determine the role of this interaction, CD13-deficient bone marrow-derived MCs (BMMCs) were analyzed. Intriguingly, antigen stimulation of CD13-deficient BMMCs results in significantly increased degranulation and proinflammatory cytokine production compared to wild-type cells. Furthermore, in a low-dose model of passive systemic anaphylaxis, antigen-dependent decrease in body temperature, reflecting the anaphylactic reaction, is substantially enhanced by the CD13 inhibitor bestatin (-5.9 ± 0.6°C) and by CD13 deficiency (-8.8 ± 0.6°C) in contrast to controls (-1.2 ± 1.97°C). Importantly, bestatin does not aggravate anaphylaxis in CD13-deficient mice. Thus, we have identified CD13 as a novel negative regulator of MC activation in vitro and in vivo. © FASEB.

Muller C.S.,Albert Ludwigs University of Freiburg | Bildl W.,Albert Ludwigs University of Freiburg | Haupt A.,Albert Ludwigs University of Freiburg | Ellenrieder L.,Institute for Biochemistry and Molecular Biology | And 9 more authors.
Molecular and Cellular Proteomics | Year: 2016

Blue native (BN) gel electrophoresis is a powerful method for protein separation. Combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), it enables large scale identification of protein complexes and their subunits. Current BN-MS approaches, however, are limited in size resolution, comprehensiveness, and quantification. Here, we present a new methodology combining defined sub-millimeter slicing of BN gels by a cryo-microtome with high performance LC-MS/MS and label-free quantification of protein amounts. Application of this cryoslicing BN-MS approach to mitochondria from rat brain demonstrated a high degree of comprehensiveness, accuracy, and size resolution. The technique provided abundance-mass profiles for 774 mitochondrial proteins, including all canonical subunits of the oxidative respiratory chain assembled into 13 distinct (super-)complexes. Moreover, the data revealed COX7R as a constitutive subunit of distinct super-complexes and identified novel assemblies of voltage-dependent anion channels/porins and TOM proteins. Together, cryo-slicing BN-MS enables quantitative profiling of complexomes with resolution close to the limits of native gel electrophoresis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

Lopez-Hernandez T.,University of Barcelona | Ridder M.C.,VU University Amsterdam | Montolio M.,University of Barcelona | Montolio M.,Research Center En Red Of Enfermedades Raras Ciberer | And 16 more authors.
American Journal of Human Genetics | Year: 2011

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly. © 2011 The American Society of Human Genetics. All rights reserved.

Bildl W.,Albert Ludwigs University of Freiburg | Haupt A.,Albert Ludwigs University of Freiburg | Haupt A.,Logopharm GmbH | Muller C.S.,Albert Ludwigs University of Freiburg | And 8 more authors.
Molecular and Cellular Proteomics | Year: 2012

Affinity purification (AP) of protein complexes combined with LC-MS/MS analysis is the current method of choice for identification of protein-protein interactions. Their interpretation with respect to significance, specificity, and selectivity requires quantification methods coping with enrichment factors of more than 1000-fold, variable amounts of total protein, and low abundant, unlabeled samples. We used standardized samples (0.1-1000 fmol) measured on high resolution hybrid linear ion trap instruments (LTQ-FT/Orbitrap) to characterize and improve linearity and dynamic range of label-free approaches. Quantification based on spectral counts was limited by saturation and ion suppression effects with samples exceeding 100 ng of protein, depending on the instrument setup. In contrast, signal intensities of peptides (peak volumes) selected by a novel correlation-based method (TopCorr-PV) were linear over at least 4 orders of magnitude and allowed for accurate relative quantification of standard proteins spiked into a complex protein background. Application of this procedure to APs of the voltage- gated potassium channel Kv1.1 as a model membrane protein complex unambiguously identified the whole set of known interaction partners together with novel candidates. In addition to discriminating these proteins from background, we could determine efficiency, cross-reactivities, and selection biases of the used purification antibodies. The enhanced dynamic range of the developed quantification procedure appears well suited for sensitive identification of specific protein-protein interactions, detection of antibody-related artifacts, and optimization of AP conditions. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

Beltran-Alvarez P.,Institute Dinvestigacio Biomedica Of Girona | Tarradas A.,Institute Dinvestigacio Biomedica Of Girona | Tarradas A.,University of Girona | Chiva C.,Proteomics Unit | And 12 more authors.
Current Therapeutic Research - Clinical and Experimental | Year: 2014

The α subunit of the cardiac voltage-gated sodium channel, NaV1.5, provides the rapid sodium inward current that initiates cardiomyocyte action potentials. Here, we analyzed for the first time the post-translational modifications of NaV1.5 purified from end-stage heart failure human cardiac tissue. We identified R526 methylation as the major post-translational modification of any NaV1.5 arginine or lysine residue. Unexpectedly, we found that the N terminus of NaV1.5 was: 1) devoid of the initiation methionine, and 2) acetylated at the resulting initial alanine residue. This is the first evidence for N-terminal acetylation in any member of the voltage-gated ion channel superfamily. Our results open the door to explore NaV1.5 N-terminal acetylation and arginine methylation levels as drivers or markers of end-stage heart failure. © 2014 Elsevier Ltd.

Discover hidden collaborations