Time filter

Source Type

Juno Beach, FL, United States

Walker C.J.,University of North Florida | Gelsleichter J.,University of North Florida | Adams D.H.,Florida Fish And Wildlife Conservation Commission | Manire C.A.,Mote Marine Laboratory | Manire C.A.,Loggerhead Marinelife Center
Fish Physiology and Biochemistry

Previous studies have demonstrated that sharks, perhaps more so than any other fishes, are capable of bioaccumulating the non-essential toxic metal mercury (Hg) to levels that threaten the health of human seafood consumers. However, few studies have explored the potential effects of Hg accumulation in sharks themselves. Therefore, the goal of this study was to examine if physiological effects occur in sharks in response to environmentally relevant levels of Hg exposure. To address this goal, the relationship between muscle Hg concentrations and muscle/hepatic levels of metallothionein (MT), a widely used protein biomarker of toxic metal exposure in fish, was examined in bonnetheads, Sphyrna tiburo, from three Florida estuaries. Total Hg concentrations in bonnethead muscle, as determined using thermal decomposition and atomic absorption spectrometry, ranged from 0.22 to 1.78 μg/g wet weight and were correlated with animal size. These observations were consistent with earlier studies on Florida bonnetheads, illustrating that they experience bioaccumulation of Hg, often to levels that threaten the health of these animals or consumers of their meat. However, despite this, MT concentrations measured using Western blot analysis were not correlated with muscle Hg concentrations. These results suggest that either environmentally relevant levels of Hg exposure and uptake are below the physiological threshold for inducing effects in sharks or MT is a poor biomarker of Hg exposure in these fishes. Of these two explanations, the latter is favored based on a growing body of evidence that questions the use of MTs as specific indicators of Hg exposure and effects in fish. © 2014 Springer Science+Business Media Dordrecht. Source

Martin K.J.,Mote Marine Laboratory and Aquarium | Martin K.J.,University of South Florida | Martin K.J.,Loggerhead Marinelife Center | Alessi S.C.,Mote Marine Laboratory and Aquarium | And 7 more authors.
Journal of Experimental Biology

The purpose of this study was to compare underwater behavioral and auditory evoked potential (AEP) audiograms in a single captive adult loggerhead sea turtle (Caretta caretta). The behavioral audiogram was collected using a go/no-go response procedure and a modified staircase method of threshold determination. AEP thresholds were measured using subdermal electrodes placed beneath the frontoparietal scale, dorsal to the midbrain. Both methods showed the loggerhead sea turtle to have low frequency hearing with best sensitivity between 100 and 400 Hz. AEP testing yielded thresholds from 100 to 1131 Hz with best sensitivity at 200 and 400 Hz (110dBre.1 μPa). Behavioral testing using 2 s tonal stimuli yielded underwater thresholds from 50 to 800Hz with best sensitivity at 100Hz (98dBre.1 uPa). Behavioral thresholds averaged 8dB lower than AEP thresholds from 100 to 400Hz and 5dB higher at 800Hz. The results suggest that AEP testing can be a good alternative to measuring a behavioral audiogram with wild or untrained marine turtles and when time is a crucial factor. © 2012. Published by The Company of Biologists Ltd. Source

Perrault J.R.,Florida Atlantic University | Miller D.L.,University of Georgia | Miller D.L.,University of Tennessee at Knoxville | Eads E.,University of Tennessee at Knoxville | And 4 more authors.

Of the seven sea turtle species, the critically endangered leatherback sea turtle (Dermochelys coriacea) exhibits the lowest and most variable nest success (i.e., hatching success and emergence success) for reasons that remain largely unknown. In an attempt to identify or rule out causes of low reproductive success in this species, we established the largest sample size (n = 60-70 for most values) of baseline blood parameters (protein electrophoresis, hematology, plasma biochemistry) for this species to date. Hematologic, protein electrophoretic and biochemical values are important tools that can provide information regarding the physiological condition of an individual and population health as a whole. It has been proposed that the health of nesting individuals affects their reproductive output. In order to establish correlations with low reproductive success in leatherback sea turtles from Florida, we compared maternal health indices to hatching success and emergence success of their nests. As expected, hatching success (median = 57.4%) and emergence success (median = 49.1%) in Floridian leatherbacks were low during the study period (2007-2008 nesting seasons), a trend common in most nesting leatherback populations (average global hatching success = ~50%). One protein electrophoretic value (gamma globulin protein) and one hematologic value (red blood cell count) significantly correlated with hatching success and emergence success. Several maternal biochemical parameters correlated with hatching success and/or emergence success including alkaline phosphatase activity, blood urea nitrogen, calcium, calcium:phosphorus ratio, carbon dioxide, cholesterol, creatinine, and phosphorus. Our results suggest that in leatherbacks, physiological parameters correlate with hatching success and emergence success of their nests. We conclude that long-term and comparative studies are needed to determine if certain individuals produce nests with lower hatching success and emergence success than others, and if those individuals with evidence of chronic suboptimal health have lower reproductive success. © 2012 Perrault et al. Source

Manire C.A.,Sea Turtle Rehabilitation Hospital | Manire C.A.,Loggerhead Marinelife Center | Anderson E.T.,Sea Turtle Rehabilitation Hospital | Byrd L.,Sea Turtle Rehabilitation Hospital | Fauquier D.A.,Mote Marine Laboratory and Aquarium
Journal of Zoo and Wildlife Medicine

Harmful algal blooms are known to cause morbidity and mortality to a large number of marine and estuarine organisms worldwide, including fish and marine mammals, birds, and turtles. The effects of these algal blooms on marine organisms are due to the various toxins produced by the different algal species. In southwest Florida, frequent blooms of the dinoflagellate Karenia brevis, which produces neurotoxins known as brevetoxins, cause widespread fish kills and affect many marine animals. In 2005-2007, numerous sea turtles of several species underwent treatment for brevetoxicosis at the Sea Turtle Rehabilitation Hospital. In green sea turtles, Chelonia mydas, and Kemp's ridley sea turtles, Lepidochelys kempii, symptoms associated with brevetoxicosis were limited to neurologic signs, such as the inability to control the head (head bobbing) and nervous twitching. For these turtles, treatment involved removing the turtles from the environment containing the toxins and providing short-term supportive care. In loggerhead sea turtles, Caretta caretta, symptoms were more generalized; thus, a similar approach was unsuccessful, as was routine treatment for general toxicosis. Loggerhead sea turtles had more extreme neurologic symptoms including coma, and other symptoms that included generalized edema, conjunctival edema, and cloacal or penile prolapse. Treatment of brevetoxicosis in loggerhead sea turtles required a therapeutic regimen that initially included dehydration and systemic antihistamine treatment followed by supportive care. © 2013 American Association of Zoo Veterinarians. Source

Keller J.M.,U.S. National Institute of Standards and Technology | Ngai L.,College of Charleston | Mcneill J.B.,National Oceanic and Atmospheric Administration | Wood L.D.,Loggerhead Marinelife Center | And 4 more authors.
Environmental Toxicology and Chemistry

The authors compared blood plasma concentrations of 13 perfluoroalkyl contaminants (PFCs) in five sea turtle species with differing trophic levels. Wild sea turtles were blood sampled from the southeastern region of the United States, and plasma was analyzed using liquid chromatography tandem mass spectrometry. Mean concentrations of perfluorooctane sulfonate (PFOS), the predominant PFC, increased with trophic level from herbivorous greens (2.41ng/g), jellyfish-eating leatherbacks (3.95ng/g), omnivorous loggerheads (6.47ng/g), to crab-eating Kemp's ridleys (15.7ng/g). However, spongivorous hawksbills had surprisingly high concentrations of PFOS (11.9ng/g) and other PFCs based on their trophic level. These baseline concentrations of biomagnifying PFCs demonstrate interesting species and geographical differences. The measured PFOS concentrations were compared with concentrations known to cause toxic effects in laboratory animals, and estimated margins of safety (EMOS) were calculated. Small EMOS (<100), suggestive of potential risk of adverse health effects, were observed for all five sea turtle species for immunosuppression. Estimated margins of safety less than 100 were also observed for liver, thyroid, and neurobehavorial effects for the more highly exposed species. These baseline concentrations and the preliminary EMOS exercise provide a better understanding of the potential health risks of PFCs for conservation managers to protect these threatened and endangered species. © 2012 SETAC. Source

Discover hidden collaborations