Entity

Time filter

Source Type

Quebec, Canada

Mayrand D.,Laval University | Laforce-Lavoie A.,Laval University | Larochelle S.,Laval University | Langlois A.,Laval University | And 4 more authors.
Angiogenesis | Year: 2012

During wound healing, angiogenesis plays a crucial role in inducing adequate perfusion of the new tissue, thereby allowing its survival. This angiogenic process contributes to the formation of granulation tissue, alongside myofibroblasts. Myofibroblasts are cells specialized in wound contraction and synthesis of new extracellular matrix. Fibroblasts, considered by some to be at the origin of myofibroblasts, have already been shown to promote neovascularization. Thus, we hypothesized that myofibroblasts play a key role during angiogenic development in wound healing. We isolated myofibroblasts from normal human skin wounds and dermal microvascular endothelial cells (HDMVEC) and fibroblasts from skin. Using an in vitro fibrin-based model, we compared the proangiogenic activity of wound myofibroblasts to that of fibroblasts in the presence of HDMVEC. By immunostaining with collagen IV antibodies, we observed the formation of a capillary network significantly more developed when HDMVEC were cultured with myofibroblasts compared to the network formed in the presence of fibroblasts. The differences between these cell types did not result from a differential secretion of Vascular Endothelial Growth Factor or basic Fibroblast Growth Factor. However, in the presence of myofibroblasts, a significant decrease in matrix metalloproteinase activity was observed. This finding was correlated with a significant increase in Tissue Inhibitor of MetalloProteinase (TIMP)-1 and TIMP-3. Furthermore, inhibition of TIMP-1 secretion using shRNA significantly decreased myofibroblasts induced angiogenesis. These results led to the hypothesis that normal wound myofibroblasts contribute to the vascular network development during wound healing. Our data emphasize the critical role of wound myofibroblasts during healing. © Springer Science+Business Media B.V. 2012. Source


Sitaras N.,University of Montreal | Rivera J.C.,University of Montreal | Noueihed B.,McGill University | Bien-Aime M.,University of Montreal | And 10 more authors.
American Journal of Pathology | Year: 2014

Ischemic retinopathies are characterized by sequential vaso-obliteration followed by abnormal intravitreal neovascularization predisposing patients to retinal detachment and blindness. Ischemic retinopathies are associated with robust inflammation that leads to generation of IL-1β, which causes vascular degeneration and impairs retinal revascularization in part through the liberation of repulsive guidance cue semaphorin 3A (Sema3A). However, retinal revascularization begins as inflammation culminates in ischemic retinopathies. Because inflammation leads to activation of proteases involved in the formation of vasculature, we hypothesized that proteinase-activated receptor (Par)-2 (official name F2rl1) may modulate deleterious effects of IL-1β. Par2, detected mostly in retinal ganglion cells, was up-regulated in oxygen-induced retinopathy. Surprisingly, oxygen-induced retinopathyeinduced vasoobliteration and neovascularization were unaltered in Par2 knockout mice, suggesting compensatory mechanisms. We therefore conditionally knocked down retinal Par2 with shRNA-Par2-eencoded lentivirus. Par2 knockdown interfered with normal revascularization, resulting in pronounced intravitreal neovascularization; conversely, the Par2 agonist peptide (SLIGRL) accelerated normal revascularization. In vitro and in vivo exploration of mechanisms revealed that IL-1β induced Par2 expression, which in turn down-regulated sequentially IL-1 receptor type I and Sema3A expression through Erk/Jnkdependent processes. Collectively, our findings unveil an important mechanism by which IL-1β regulates its own endothelial cytotoxic actions by augmenting neuronal Par2 expression to repress sequentially IL-1 receptor type I and Sema3A expression. Timely activation of Par2 may be a promising therapeutic avenue in ischemic retinopathies. Copyright © 2015 American Society for Investigative Pathology. Source


Landreville S.,University of Washington | Vigneault F.,Harvard University | Bergeron M.-A.,LOEX Inc | Leclerc S.,LOEX Inc | And 7 more authors.
Pigment Cell and Melanoma Research | Year: 2011

Cancer aggressiveness is related to the ability of cancer cells to escape the anchorage dependency toward the extracellular matrix, a process regulated by the integrin α5β1 and its ligand fibronectin. Here, we characterized the expression of the α5 gene in human uveal melanoma cell lines with distinct tumorigenic properties and investigated some of the mechanisms underlying the variations of their malignancy. Strong and weak expression of α5 was observed in cells with no (T108/T115) and high (T97/T98) tumorigenic properties, respectively. Expression and DNA binding of the transcription factors Sp1, activator protein 1 (AP-1) (both acting as activators), and nuclear factor I (NFI) (a strong repressor) to the α5 promoter were demonstrated in all cell lines. A reduced expression of AP-1 combined with a dramatic increase in NFI correlated with the suppression of α5 expression in T97 and T98 cells. Restoring α5 expression in T97 cells entirely abolished their tumorigenicity in immunodeficient mice. These uveal melanoma cell lines might therefore prove particularly useful as cellular models to investigate α5β1 function in the pathogenesis of invasive uveal melanoma. © 2011 John Wiley & Sons A/S. Source


Gibot L.,LOEX Inc | Galbraith T.,LOEX Inc | Huot J.,Laval University | Auger F.A.,LOEX Inc | Auger F.A.,Laval University
Clinical and Experimental Metastasis | Year: 2013

Cutaneous malignant melanomas represent an important clinical problem because they are highly invasive, they can metastasize to distant sites and are typically resistant to available therapy. The precise molecular determinants responsible for melanoma progression and chemo-resistance are not yet known, in part due to lack of pertinent experimental models that mimic human melanoma progression. Accordingly, we developed a complex human microvascularized reconstructed skin substitute in which the organized three-dimensional (3D) architecture of the native skin is reproduced. Human melanoma cell lines derived from primary and metastatic sites were added to this 3D model. Our results demonstrate that histological features and behavior of melanoma cells applied in our skin substitute model are specific to their site of origin. In particular, the ability of melanoma cells to cross the dermal-epidermal junction correlates with their metastatic potential. In addition, a potent angiogenic effect was detected for an aggressive metastatic cell line that produces VEGF. The presence of a microvascular network within this model will allow studying a crucial step of the metastatic process. We conclude that such an in vitro human tumor microvascularized reconstructed skin substitute promises to be a versatile and efficient model to investigate skin cancer progression and to screen new anticancer drugs to improve currents clinical treatments. © 2012 Springer Science+Business Media B.V. Source


Imbeault A.,Laval University | Bernard G.,LOEX Inc | Ouellet G.,LOEX Inc | Bouhout S.,LOEX Inc | And 3 more authors.
Journal of Sexual Medicine | Year: 2011

Introduction. Surgical treatment is indicated in severe cases of Peyronie's disease. Incision of the plaque with subsequent graft material implantation is the option of choice. Ideal graft tissue is not yet available. Aim. To evaluate the use of an autologous tissue-engineered endothelialized graft by the self-assembly method, for tunica albuginea (TA) reconstruction in Peyronie's disease. Methods. Two TA models were created. Human fibroblasts were isolated from a skin biopsy and cultured in vitro until formation of fibroblast sheets. After 4 weeks of maturation, human umbilical vein endothelial cells (HUVEC) were seeded on fibroblasts sheets and wrapped around a tubular support to form a cylinder of about 10 layers. After 21 days of tube maturation, HUVEC were seeded into the lumen of the fibroblast tubes for the endothelialized tunica albuginea (ETA). No HUVEC were seeded into the lumen for the TA model. Both constructs were placed under perfusion in a bioreactor for 1 week. Main Outcome Measures. Histology, immunohistochemistry, and burst pressure were performed to characterize mature tubular graft. Animal manipulations were also performed to demonstrate the impact of endothelial cells in vivo. Results. Histology showed uniform multilayered fibroblasts. Extracellular matrix, produced entirely by fibroblasts, presented a good staining for collagen 1. Some elastin fibers were also present. For the TA model, anti-human von Willebrand antibody revealed the endothelial cells forming capillary-like structures. TA model reached a burst pressure of 584mmHg and ETA model obtained a burst pressure of 719mmHg. Conclusions. This tissue-engineered endothelialized tubular graft is structurally similar to normal TA and presents an adequate mechanical resistance. The self-assembly method used and the autologous property of this model could represent an advantage comparatively to other available grafts. Further evaluation including functional testing will be necessary to characterize in vivo implantation and behavior of the graft. © 2011 International Society for Sexual Medicine. Source

Discover hidden collaborations