Entity

Time filter

Source Type

Castel Guelfo di Bologna, Italy

Caroselli E.,University of Bologna | Mattioli G.,Local Health Enterprise of Bologna | Levy O.,Bar - Ilan University | Falini G.,University of Bologna | And 2 more authors.
Frontiers in Zoology | Year: 2012

Introduction: Correlations between sea surface temperature (SST) and growth parameters of the solitary azooxanthellate Dendrophylliid Leptopsammia pruvoti were assessed along an 8° latitudinal gradient on western Italian coasts (Mediterranean Sea), to check for possible negative effects of increasing temperature as the ones reported for a closely related, sympatric but zooxanthellate species.Results: Calcification rate was correlated with skeletal density but not with linear extension rate, indicating that calcium carbonate deposition was preferentially allocated to keep a constant skeletal density. Unlike most studies on both temperate and tropical zooxanthellate corals, where calcification rate is strongly related to environmental parameters such as SST, in the present study calcification rate was not correlated with SST.Conclusions: The lower sensitivity of L. pruvoti to SST with respect to other sympatric zooxanthellate corals, such as Balanophyllia europaea, may rely on the absence of a temperature induced inhibition of photosynthesis, and thus the absence of an inhibition of the calcification process. This study is the first field investigation of the relationship between SST and the three growth parameters of an azooxanthellate coral. Increasing research effort on determining the effects of temperature on biological traits of the poorly studied azooxanthellate scleractinians may help to predict the possible species assemblage shifts that are likely to occur in the immediate future as a consequence of global climatic change. © 2012 Caroselli et al.; licensee BioMed Central Ltd. Source


Goffredo S.,University of Bologna | Caroselli E.,University of Bologna | Mattioli G.,Local Health Enterprise of Bologna | Zaccanti F.,University of Bologna
Marine Biology | Year: 2010

In corals where complex life history processes decoupling age from size (e. g., fragmentation, fusion, partial colony mortality) are rare or clearly detectable, individual age may be determined from size, and age-based growth and population dynamic models may be applied. One example is the solitary Mediterranean coral Leptopsammia pruvoti Lacaze-Duthiers 1897, whose population size and structure, and growth rates were determined at Calafuria (43°28′N and 10°20′E), Ligurian Sea, from December 2007 to June 2009. Growth rate decreased with increasing size. The growth curve derived from field measurements confirmed the one obtained by growth band analysis. The frequency of individuals decreased exponentially with age, indicating a steady state population. Turnover time was 2.3 years. Maximum life span was 13 years. Most reproductive output was from intermediate age classes (6 years), while older individuals (>7 years), although having higher fecundity, were rare and accounted for a minority of population reproductive output. In comparison with other solitary dendrophylliids, L. pruvoti life strategy was characterized by a reproduction with r-strategy correlates (high fecundity, short embryo incubation, small planula size, fast achievement of sexual maturity), and a rate of demographic renewal occurring halfway along the r-K continuum (intermediate turnover time and maximum longevity). © 2010 Springer-Verlag. Source


Caroselli E.,University of Bologna | Zaccanti F.,University of Bologna | Mattioli G.,Local Health Enterprise of Bologna | Falini G.,University of Bologna | And 3 more authors.
PLoS ONE | Year: 2012

The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST) gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change. © 2012 Caroselli et al. Source


Caroselli E.,University of Bologna | Ricci F.,University of Bologna | Brambilla V.,University of Bologna | Mattioli G.,Local Health Enterprise of Bologna | And 4 more authors.
Coral Reefs | Year: 2015

The ecology of scleractinian corals may be understood through comparisons between population demographic data and environmental parameters. Growth (growth constant and maximum size) and demographic parameters (population structure stability, instantaneous mortality rate, average age of individuals, percentage of immature individuals, age at maximum biomass, and average age of biomass) of the solitary, non-zooxanthellate, and temperate coral Caryophyllia inornata were investigated at six sites along an 8° latitudinal gradient of temperature and solar radiation (SR) on the western Italian coasts. Growth parameters were homogeneous among populations across the investigated latitudinal range. While demographic parameters were not correlated with depth temperature, populations were progressively less stable and showed a deficiency of young individuals with increasing SR, likely as a result of the lowered energetic resources due to reduced zooplankton availability. These results contrast with data from another Mediterranean non-zooxanthellate solitary coral, Leptopsammia pruvoti, investigated along the same gradient, which shows no correlation between population demography and temperature or SR. © 2015 Springer-Verlag Berlin Heidelberg Source


Caroselli E.,University of Bologna | Brambilla V.,University of Bologna | Ricci F.,University of Bologna | Mattioli G.,Local Health Enterprise of Bologna | And 4 more authors.
Coral Reefs | Year: 2016

Correlations between environmental parameters (depth temperature and solar radiation) and growth parameters (bulk skeletal density, linear extension rate and net calcification rate) of the solitary azooxanthellate coral, Caryophyllia inornata, were investigated along an 8° latitudinal gradient on the western Italian coasts. Net calcification rate correlated positively with both bulk skeletal density and linear extension rate, showing that C. inornata allocates calcification resources evenly to thickening the skeleton and increasing linear growth. Overall, the three growth parameters did not follow gradients in the two environmental parameters, showing a different trend compared to most studies on zooxanthellate corals. However, the results are in agreement with the only previous analysis of an azooxanthellate coral, Leptopsammia pruvoti, studied along the same latitudinal gradient. In a comparison of the response to temperature of all Mediterranean species whose growth has been investigated to date, azooxanthellate corals were more tolerant to temperature increases than zooxanthellate corals. © 2016 Springer-Verlag Berlin Heidelberg Source

Discover hidden collaborations