Gainesville, FL, United States
Gainesville, FL, United States

Time filter

Source Type

Embodiments relate to an apparatus and method for performing a split-lateral load test. Embodiments use a double hydraulic jack to apply two lateral loads, having equal magnitudes and opposite directions, to the soil layer of an excavation for a deep foundation element. Data such as the magnitude of the lateral load and magnitude of the displacement of the loading mechanism upon application of the lateral load can be measured and/or recorded. Embodiments can yield soil modulus (E_(s)) information in a form analogous to a p-y curve, which can be used to design a pile structure and pile placement, and model a pile response to lateral loading using computer software. Embodiments do not require the casting of concrete, and allow the split lateral loading mechanism to be sequentially positioned, and apply lateral loads, at multiple depths in an excavation. Embodiments simultaneously apply bi-directional lateral loads at multiple depths in an excavation.


An annular assembly, or ring cell, is provided for testing the load bearing capacity of piles. The ring cell walls of the annular assembly can be made of stamped material. The ring cell walls can be an outer ring wall and an inner ring wall. Alternately, the ring cell walls can have a U-type shape cross-section including an outer ring wall, an inner ring wall, and a top wall. Fluid can be provided to the annular assembly through fluid supply lines into an expansion zone. The expansion zone can be a space having a bladder for filling with fluid. In another embodiment, the expansion zone can be a space between a filler material capable of withstanding high pressure separated with a membrane. The pressure of the fluid in the expansion zone can be monitored during testing.


Patent
Loadtest , Inc. | Date: 2015-12-22

Embodiments of the present invention relate to a caliper and method for mapping the dimensions and topography of a formation such as the sidewall of a borehole. Examples of formations in which embodiments of the invention can be used include, but are not limited to, an oil, gas, pile borehole or barrette that has been drilled or excavated into the earth.


Patent
Loadtest , Inc. | Date: 2011-05-18

In an embodiment, a hydraulic jack is provided having a first portion and a second portion. The first portion attached to a first section of a structure and the second portion attached to a second section of the structure. When a pressurized fluid is forced between the first portion and the second portion, a load is transferred to the first section and the second section by the pressure of the fluid on the first portion and the second portion. The first section and the second section are forced apart by the load, thus creating or enlarging at least one void in the structure. The pressurized fluid fills or partially fills one or more of the at least one void, thereby increasing the surface area effectively normal to the direction of the load in contact with the pressurized fluid.


An embodiment of the subject invention is directed to a jack incorporating one or more strain gauges. The one or more strain gauges can be positioned on, within, or integral to the jack. When a load or force is applied by the jack, one or more materials within the jack are deformed or displaced as a result of the applied load. The one or more strain gauges are used to measure the deformation or displacement and thus measure the strain. The measured strain can be used to determine the magnitude of the load applied by the jack. In an embodiment, a plurality of strain gauges are used and the resulting strain measurements can be combined to determine the applied load.


Patent
Loadtest , Inc. | Date: 2014-07-29

In an embodiment, a hydraulic jack is provided having a first portion and a second portion. The first portion attached to a first section of a structure and the second portion attached to a second section of the structure. When a pressurized fluid is forced between the first portion and the second portion, a load is transferred to the first section and the second section by the pressure of the fluid on the first portion and the second portion. The first section and the second section are forced apart by the load, thus creating or enlarging at least one void in the structure. The pressurized fluid fills or partially fills one or more of the at least one void, thereby increasing the surface area effectively normal to the direction of the load in contact with the pressurized fluid.


Patent
Loadtest , Inc. | Date: 2013-05-20

In an embodiment, a hydraulic jack is provided having a first portion and a second portion. The first portion attached to a first section of a structure and the second portion attached to a second section of the structure. When a pressurized fluid is forced between the first portion and the second portion, a load is transferred to the first section and the second section by the pressure of the fluid on the first portion and the second portion. The first section and the second section are forced apart by the load, thus creating or enlarging at least one void in the structure. The pressurized fluid fills or partially fills one or more of the at least one void, thereby increasing the surface area effectively normal to the direction of the load in contact with the pressurized fluid.


Patent
Loadtest , Inc. | Date: 2011-12-07

In an embodiment, a hydraulic jack is provided having a first portion and a second portion. The first portion attached to a first section of a structure and the second portion attached to a second section of the structure. When a pressurized fluid is forced between the first portion and the second portion, a load is transferred to the first section and the second section by the pressure of the fluid on the first portion and the second portion. The first section and the second section are forced apart by the load, thus creating or enlarging at least one void in the structure. The pressurized fluid fills or partially fills one or more of the at least one void, thereby increasing the surface area effectively normal to the direction of the load in contact with the pressurized fluid.


An embodiment of the subject invention is directed to a jack incorporating one or more strain gauges. The one or more strain gauges can be positioned on, within, or integral to the jack. When a load or force is applied by the jack, one or more materials within the jack are deformed or displaced as a result of the applied load. The one or more strain gauges are used to measure the deformation or displacement and thus measure the strain. The measured strain can be used to determine the magnitude of the load applied by the jack. In an embodiment, a plurality of strain gauges are used and the resulting strain measurements can be combined to determine the applied load.


An annular assembly, or ring cell, is provided for testing the load bearing capacity of piles. The ring cell walls of the annular assembly can be made of stamped material. The ring cell walls can be an outer ring wall and an inner ring wall. Alternately, the ring cell walls can have a U-type shape cross-section including an outer ring wall, an inner ring wall, and a top wall. Fluid can be provided to the annular assembly through fluid supply lines into an expansion zone. The expansion zone can be a space having a bladder for filling with fluid. In another embodiment, the expansion zone can be a space between a filler material capable of withstanding high pressure separated with a membrane. The pressure of the fluid in the expansion zone can be monitored during testing.

Loading Loadtest , Inc. collaborators
Loading Loadtest , Inc. collaborators