Time filter

Source Type

Oxford, United Kingdom

Kurtovic-Kozaric A.,Taussig Cancer Institute | Kurtovic-Kozaric A.,University of Sarajevo | Przychodzen B.,Taussig Cancer Institute | Singh J.,Cleveland Clinic | And 16 more authors.
Leukemia | Year: 2015

Mutations of spliceosome components are common in myeloid neoplasms. One of the affected genes, PRPF8, encodes the most evolutionarily conserved spliceosomal protein. We identified either recurrent somatic PRPF8 mutations or hemizygous deletions in 15/447 and 24/450 cases, respectively. Fifty percent of PRPF8 mutant and del(17p) cases were found in AML and conveyed poor prognosis. PRPF8 defects correlated with increased myeloblasts and ring sideroblasts in cases without SF3B1 mutations. Knockdown of PRPF8 in K562 and CD34+ primary bone marrow cells increased proliferative capacity. Whole-RNA deep sequencing of primary cells from patients with PRPF8 abnormalities demonstrated consistent missplicing defects. In yeast models, homologous mutations introduced into Prp8 abrogated a block experimentally produced in the second step of the RNA splicing process, suggesting that the mutants have defects in proof-reading functions. In sum, the exploration of clinical and functional consequences suggests that PRPF8 is a novel leukemogenic gene in myeloid neoplasms with a distinct phenotype likely manifested through aberrant splicing. © 2015 Macmillan Publishers Limited.

Jerez A.,Cleveland Clinic | Sugimoto Y.,Cleveland Clinic | Makishima H.,Cleveland Clinic | Verma A.,Yeshiva University | And 18 more authors.
Blood | Year: 2012

Loss of heterozygosity affecting chromosome 7q is common in acute myeloid leukemia and myelodysplastic syndromes, pointing toward the essential role of this region in disease phenotype and clonal evolution. The higher resolution offered by recently developed genomic platforms may be used to establish more precise clinical correlations and identify specific target genes. We analyzed a series of patients with myeloid disorders using recent genomic technologies (1458 by single-nucleotide polymorphism arrays [SNP-A], 226 by next-generation sequencing, and 183 by expression microarrays). Using SNP-A, we identified chromosome 7q loss of heterozygosity segments in 161 of 1458 patients (11%); 26% of chronic myelomonocytic leukemia patients harbored 7q uniparental disomy, of which 41% had a homozygous EZH2 mutation. In addition, we describe an SNP-A - isolated deletion 7 hypocellular myelodysplastic syndrome subset, with a high rate of progression. Using direct and parallel sequencing, we found no recurrent mutations in typically large deletion 7q and monosomy 7 patients. In contrast, we detected a markedly decreased expression of genes included in our SNP-A defined minimally deleted regions. Although a 2-hit model is present in most patients with 7q uniparental disomy and a myeloproliferative phenotype, haplodeficient expression of defined regions of 7q may underlie pathogenesis in patients with deletions and predominant dysplastic features. © 2012 by The American Society of Hematology.

Bhagat T.D.,Albert Einstein Medical Center | Zhou L.,Albert Einstein Medical Center | Sokol L.,Moffitt Cancer Center | Kessel R.,Albert Einstein Medical Center | And 22 more authors.
Blood | Year: 2013

Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis that leads to peripheral cytopenias. We observed that SMAD7, a negative regulator of transforming growth factor-beta (TGF-β) receptor-I kinase, is markedly reduced in MDS and leads to ineffective hematopoiesis by overactivation of TGF-β signaling. To determine the cause of SMAD7 reduction in MDS, we analyzed the 3′UTR of the gene and determined that it contains a highly conserved putative binding site for microRNA-21. We observed significantly elevated levels of miR-21 in MDS marrow samples when compared with age-matched controls.miR-21 was shownto directly bind to the 3′UTR of SMAD7 and reduce its expression in hematopoietic cells. Next, we tested the role of miR-21 in regulating TGF-β signaling in a TGF-β-overexpressing transgenic mouse model that develops progressive anemia and dysplasia and thus serves as a model of human bone marrow failure. Treatment with a chemically modified miR-21 inhibitor led to significant increases in hematocrit and led to an increase in SMAD7 expression in vivo. Inhibition of miR-21 also led to an increase in erythroid colony formation from primary MDS bone marrow progenitors, demonstrating its ability in stimulating hematopoiesis in vitro. Taken together, these studies demonstrate the role ofmiR-21 in regulating overactivated TGF-β signaling in MDS. © 2013 by The American Society of Hematology.

Fernandez-Mercado M.,LLR Molecular Haematology Unit | Yip B.H.,LLR Molecular Haematology Unit | Pellagatti A.,LLR Molecular Haematology Unit | Davies C.,LLR Molecular Haematology Unit | And 11 more authors.
PLoS ONE | Year: 2012

Acute myeloid leukemia patients with normal cytogenetics (CN-AML) account for almost half of AML cases. We aimed to study the frequency and relationship of a wide range of genes previously reported as mutated in AML (ASXL1, NPM1, FLT3, TET2, IDH1/2, RUNX1, DNMT3A, NRAS, JAK2, WT1, CBL, SF3B1, TP53, KRAS and MPL) in a series of 84 CN-AML cases. The most frequently mutated genes in primary cases were NPM1 (60.8%) and FLT3 (50.0%), and in secondary cases ASXL1 (48.5%) and TET2 (30.3%). We showed that 85% of CN-AML patients have mutations in at least one of ASXL1, NPM1, FLT3, TET2, IDH1/2 and/or RUNX1. Serial samples from 19 MDS/CMML cases that progressed to AML were analyzed for ASXL1/TET2/IDH1/2 mutations; seventeen cases presented mutations of at least one of these genes. However, there was no consistent pattern in mutation acquisition during disease progression. This report concerns the analysis of the largest number of gene mutations in CN-AML studied to date, and provides insight into the mutational profile of CN-AML. © 2012 Fernandez-Mercado et al.

Fernandez-Mercado M.,LLR Molecular Haematology Unit | Burns A.,Biomedical Research Center | Pellagatti A.,LLR Molecular Haematology Unit | Giagounidis A.,Medizinische Klinik II | And 8 more authors.
Haematologica | Year: 2013

Interstitial deletion of chromosome 5q is the most common chromosomal abnormality in myelodysplastic syndromes. The catalogue of genes involved in the molecular pathogenesis of myelodysplastic syndromes is rapidly expanding and next-generation sequencing technology allows detection of these mutations at great depth. Here we describe the design, validation and application of a targeted next-generation sequencing approach to simultaneously screen 25 genes mutated in myeloid malignancies. We used this method alongside single nucleotide polymorphism-array technology to characterize the mutational and cytogenetic profile of 43 cases of early or advanced del(5q) myelodysplastic syndromes. A total of 29 mutations were detected in our cohort. Overall, 45% of early and 66.7% of advanced cases had at least one mutation. Genes with the highest mutation frequency among advanced cases were TP53 and ASXL1 (25% of patients each). These showed a lower mutation frequency in cases of 5q- syndrome (4.5% and 13.6%, respectively), suggesting a role in disease progression in del(5q) myelodysplastic syndromes. Fifty-two percent of mutations identified were in genes involved in epigenetic regulation (ASXL1, TET2, DNMT3A and JAK2). Six mutations had allele frequencies <20%, likely below the detection limit of traditional sequencing methods. Genomic array data showed that cases of advanced del(5q) myelodysplastic syndrome had a complex background of cytogenetic aberrations, often encompassing genes involved in myeloid disorders. Our study is the first to investigate the molecular pathogenesis of early and advanced del(5q) myelodysplastic syndromes using next-generation sequencing technology on a large panel of genes frequently mutated in myeloid malignancies, further illuminating the molecular landscape of del(5q) myelodysplastic syndromes. © 2013 Ferrata Storti Foundation.

Discover hidden collaborations