Sunnyvale, CA, United States
Sunnyvale, CA, United States

Time filter

Source Type

Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) with multiple RF signal transmitters and RF signal receivers capable of concurrent operations. Multiple successions of test data packets from a tester to respective RF signal receivers of the DUT and multiple successions of responsive DUT data packets from respective RF signal transmitters of the DUT to the tester are conveyed such that multiple RF signal transmissions, multiple RF signal receptions, or RF signal transmission and reception are performed at least partially concurrently.


System and method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) to enable use of measured packet error rate (PER) to determine transmit signal quality and thereby estimate error vector magnitude (EVM) of the DUT. By using a reference RF data packet signal transceiver having device characteristics and capabilities similar to the DUT including a low noise figure, in place of a formal test instrument with a significantly higher noise figure, significantly lower power DUT transmit signals can be tested, since the additional SNR is not required to determine transmit signal quality, thereby enabling reliable testing of transmit signal quality of the lower power signals from the DUTs. With a calibrated reference RF data packet signal receiver, a reduction in sensitivity as compared to the calibrated sensitivity indicates a reduced transmit signal quality of the received packet.


A system and method for testing a radio frequency (RF) multiple-input-multiple-output (MIMO) device under test (DUT) in which system costs are minimized by using fewer precision RF MIMO testing subsystems together with lower precision integrated RF MIMO signal conversion circuitry to test the DUT.


Method for testing implicit beamforming performance of a multiple-input multiple-output (MIMO) radio frequency (RF) data packet signal transceiver device under test (DUT). The data packet signals forming the sequential data packet signal transmissions used for beamforming are produced with a selectively varied phase difference and conveyed via internal RF signal paths to external transmit terminals. Combining these transmitted data packet signals produces a combined data packet signal in which a peak power occurs during which a particular phase difference is being induced between the sequential DUT data packet signal transmissions used for the beamforming. This phase difference corresponds to the difference in RF signal phase lengths between the internal RF signal paths of the DUT, and is thereby indicative of the amount of phase shift needed between the sequential DUT data packet signal transmissions used for the beamforming to enable optimal implicit beamforming performance.


A method for wireless communications testing using downlink (DL) signal transmissions from an access point to a mobile terminal and uplink (UL) signal transmissions from said mobile terminal to said access point. Accurate block error rate (BLER) testing of LTE mobile devices in a wireless signal environment is enabled by preventing repeated transmissions of the same downlink (DL) data block that would normally follow reception of uplink (UL) transmissions of negative UL acknowledgments (NACKs) caused by failures to decode prior DL data transmissions, thereby producing cumulative NACK counts accurately reflecting data reception errors.


Method for testing one or more of a group of radio frequency (RF) data packet signal transceiver devices under test (DUTs) with reduced signal interference from the remaining DUTs. A tester broadcasts a signal containing power control instructions about uplink signal power characteristics for communication with the tester. For example, for the LTE 3GPP standards, such characteristics could include power ramping step size, preamble initial received target power or maximum number of preamble transmissions for uplink signals transmitted from the DUTs. Following initiation of communication between the tester and one or more DUTs, the tester broadcasts a signal containing power control instructions to instruct the remaining DUTs to transmit any future signals with different uplink signal power characteristics. For the LTE 3GPP standards, such different characteristics could include reduced power ramping step size, reduced preamble initial received target power or reduced maximum number of preamble transmissions for uplink signals.


Method for calibrating an over-the air (OTA) test system for testing multiple radio frequency (RF) data packet signal transceiver devices under test (DUTs), as well as using such a calibrated OTA test system for performing such tests. Calibration is achieved by placing a known good device (KGD) in multiple defined locations within the OTA test system, radiating the KGD with RF test signals at each location, and collecting from the KGD at each location channel quality information identifying optimal RF test signal sub-band channels for ensuring reliable communications within the test system. Use of such system includes placing multiple DUTs at the defined locations within the OTA test system and communicating with them wirelessly via the identified optimal RF test signal sub-band channels.


Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) in which test data packets with varying power levels are transmitted to the DUT for testing the DUT while still ensuring that the DUT remains in receive (RX) mode and is prevented from searching for another data packet signal. Alternatively, in the event that the DUT becomes unresponsive due to searching for another data packet signal, multiple test data packets with sufficient signal power levels to ensure reception by the DUT are transmitted to the DUT to cause the DUT to cease searching for another data packet signal and return to RX mode.


Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) including detecting transitions between RF data packet signal transmission and reception by the DUT, detecting transitions between different RF data packet signal transmission operations by the DUT, and detecting transitions between different RF data packet signal reception operations by the DUT.


Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) via a wireless signal medium that enables final functional testing of a fully assembled DUT without requiring wired signal connections. System performance characteristics indicative of manufacturing assembly defects, such as defective antennas or subsystem connections, can be performed using over the air (OTA) test signals communicated wirelessly between the DUT and a tester. By using actual DUT performance characteristics determined during earlier manufacturing tests, such as receiver sensitivity and transmitter power, and known power levels available from the tester transmitter, the OTA signal path loss (i.e., attenuation of the wireless signal) can be estimated and used to confirm the final state of system operation.

Loading Litepoint collaborators
Loading Litepoint collaborators