Entity

Time filter

Source Type

Dresden, Germany

Rodenfels J.,Max Planck Institute of Molecular Cell Biology and Genetics | Lavrynenko O.,Max Planck Institute of Molecular Cell Biology and Genetics | Ayciriex S.,Max Planck Institute of Molecular Cell Biology and Genetics | Sampaio J.L.,Max Planck Institute of Molecular Cell Biology and Genetics | And 5 more authors.
Genes and Development | Year: 2014

In Drosophila larvae, growth and developmental timing are regulated by nutrition in a tightly coordinated fashion. The networks that couple these processes are far from understood. Here, we show that the intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of the signaling protein Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh signals to the fat body to control larval growth. It regulates developmental timing by controlling ecdysteroid production in the prothoracic gland. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol (TAG) stores. Thus, we demonstrate that Hh, previously known only for its local morphogenetic functions, also acts as a lipoprotein-associated endocrine hormone, coordinating the response of multiple tissues to nutrient availability. © 2014, Rodenfels et al. Source


Levental K.R.,University of Texas Health Science Center at Houston | Lorent J.H.,University of Texas Health Science Center at Houston | Lin X.,University of Texas Health Science Center at Houston | Skinkle A.D.,Rice University | And 4 more authors.
Biophysical Journal | Year: 2016

The plasma membrane (PM) serves as the functional interface between a cell and its environment, hosting extracellular signal transduction and nutrient transport among a variety of other processes. To support this extensive functionality, PMs are organized into lateral domains, including ordered, lipid-driven assemblies termed lipid rafts. Although the general requirements for ordered domain formation are well established, how these domains are regulated by cell-endogenous mechanisms or exogenous perturbations has not been widely addressed. In this context, an intriguing possibility is that dietary fats can incorporate into membrane lipids to regulate the properties and physiology of raft domains. Here, we investigate the effects of polyunsaturated fats on the organization of membrane domains across a spectrum of membrane models, including computer simulations, synthetic lipid membranes, and intact PMs isolated from mammalian cells. We observe that the ω-3 polyunsaturated fatty acid docosahexaenoic acid is robustly incorporated into membrane lipids, and this incorporation leads to significant remodeling of the PM lipidome. Across model systems, docosahexaenoic acid-containing lipids enhance the stability of ordered raft domains by increasing the order difference between them and coexisting nonraft domains. The relationship between interdomain order disparity and the stability of phase separation holds for a spectrum of different perturbations, including manipulation of cholesterol levels and high concentrations of exogenous amphiphiles, suggesting it as a general feature of the organization of biological membranes. These results demonstrate that polyunsaturated fats affect the composition and organization of biological membranes, suggesting a potential mechanism for the extensive effects of dietary fat on health and disease. © 2016 Biophysical Society. Source


Herzog R.,MPI of Molecular Cell Biology and Genetics | Herzog R.,Lipotype GmbH | Schwudke D.,Research Center Borstel | Shevchenko A.,MPI of Molecular Cell Biology and Genetics
Current Protocols in Bioinformatics | Year: 2013

LipidXplorer is an open-source software kit that supports the identification and quantification of molecular species of any lipid class detected by shotgun experiments performed on any mass spectrometry platform. LipidXplorer does not rely on a database of reference spectra: instead, lipid identification routines are user defined in the declarative molecular fragmentation query language (MFQL). The software supports batch processing of multiple shotgun acquisitions by high-resolution mass mapping, precursor and neutral-loss scanning, and data-dependentMS/MSlending itself to a variety of lipidomics applications in cell biology and molecular medicine. © 2013 by John Wiley & Sons, Inc. Source


Gerl M.J.,University of Heidelberg | Gerl M.J.,Lipotype GmbH | Bittl V.,University of Heidelberg | Kirchner S.,University of Heidelberg | And 11 more authors.
PLoS ONE | Year: 2016

Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipidto-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. © 2016 Gerl et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


Surma M.A.,Wroclaw University | Surma M.A.,Lipotype GmbH | Szczepaniak A.,Wroclaw University | Kroliczewski J.,Wroclaw University
PLoS ONE | Year: 2014

The present paper is a systematic, comparative study on the reconstitution of an apocytochrome b6 purified from a heterologous system using a detergent-free method and reconstitution into liposomes performed using three different detergents: SDS, Triton X-100 and DM, and two methods of detergent removal by dialysis and using Bio-Beads. The product size, its distribution and zeta potential, and other parameters were monitored throughout the process. We found that zeta potential of proteoliposomes is correlated with reconstitution efficiency and, as such, can serve as a quick and convenient quality control for reconstitution experiments. We also advocate using detergent-free protein purification methods as they allow for an unfettered choice of detergent for reconstitution, which is the most crucial factor influencing the final product parameters. © 2014 Surma et al. Source

Discover hidden collaborations