Time filter

Source Type

Raleigh, NC, United States

O'Connell T.M.,LipoScience
Bioanalysis | Year: 2012

The burden of cancer is growing worldwide and with it a more desperate need for better tools to detect, diagnose and monitor the disease is required. It is well recognized that cancer cells are characterized by distinct metabolic perturbations. The metabolomics approach involves the comprehensive profiling of the full complement of low MW compounds in a biological system. By applying advanced analytical and statistical tools, the 'metabolome' is mined for biomarkers that are associated with the state of cancer. This review presents an introduction to the main analytical platforms used in metabolomics analyses, such as NMR spectroscopy and MS, as well as the statistical tools used to mine these datasets. The discussion focuses on 'state-of-the-art' investigations on the four cancer types that have received the most study by metabolomics, namely breast, prostate, colorectal and liver cancer. © 2012 Future Science Ltd.

Methods, systems and circuits evaluate a subjects CVD risk using a risk parameter that includes at least one HDL and inflammatory biomarker interaction parameter. The inflammatory biomarker may optionally comprise NMR derived measurements of GlycA from at least one biosample of the subject. The risk parameter may be gender-specific.

LipoScience | Date: 2013-03-14

Biomarkers and/or risk assessments identify patients having an increased risk of certain clinical disease states including, for example, CHD, type 2 diabetes, dementia, or all-cause death (ACD) using NMR signal to measure a level of GlycA in arbitrary units or in defined units (e.g., mol/L) that can be determined using a defined single peak region of proton NMR spectra. The GlycA measurement can be used as an inflammation biomarker for clinical disease states. The NMR signal for GlycA can include a fitting region of signal between about 2.080 ppm and 1.845 ppm of the proton NMR spectra.

LipoScience | Date: 2014-03-06

The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.

Embodiments of the invention are directed to methods, systems and computer programs that provide improved risk stratification for people having elevated large HDL-P using at least one defined HDL risk interaction parameter.

Discover hidden collaborations