Time filter

Source Type

Burnett T.,National Physical Laboratory United Kingdom | Yakimova R.,Linkooping University | Kazakova O.,National Physical Laboratory United Kingdom
Nano Letters

Local electrical characterization of epitaxial graphene grown on 4H-SiC(0001) using electrostatic force microscopy (EFM) in ambient conditions and at elevated temperatures is presented. EFM provides a straightforward identification of graphene with different numbers of layers on the substrate where topographical determination is hindered by adsorbates. Novel EFM spectroscopy has been developed measuring the EFM phase as a function of the electrical DC bias, establishing a rigorous way to distinguish graphene domains and facilitating optimization of EFM imaging. © 2011 American Chemical Society. Source

Hsu C.-W.,Linkooping University | Lundskog A.,Linkooping University | Karlsson K.F.,Linkooping University | Forsberg U.,Linkooping University | And 2 more authors.
Nano Letters

Fabrication of single InGaN quantum dots (QDs) on top of GaN micropyramids is reported. The formation of single QDs is evidenced by showing single sub-millielectronvolt emission lines in microphotoluminescence (μPL) spectra. Tunable QD emission energy by varying the growth temperature of the InGaN layers is also demonstrated. From μPL, it is evident that the QDs are located in the apexes of the pyramids. The fact that the emission lines of the QDs are linear polarized in a preferred direction implies that the apexes induce unidirected anisotropic fields to the QDs. The single emission lines remain unchanged with increasing the excitation power and/or crystal temperature. An in-plane elongated QD forming a shallow potential with an equal number of trapped electrons and holes is proposed to explain the absence of other exciton complexes. © 2011 American Chemical Society. Source

Discover hidden collaborations