Time filter

Source Type

Nishi-Tokyo-shi, Japan

Kinki University and Link Genomics Inc. | Date: 2014-12-05

The present invention provides a prophylactic or therapeutic agent for various malignant tumors, including currently intractable solid tumors, which contains a novel antibody having the ability to bind to human LAT1/CD98 and inducing antibody-dependent cellular cytotoxicity specifically against cancer cells as an active ingredient.

Woodward W.A.,University of Houston | Krishnamurthy S.,University of Houston | Yamauchi H.,St. Lukes International Hospital | El-Zein R.,University of Houston | And 12 more authors.
Breast Cancer Research and Treatment | Year: 2013

Inflammatory breast cancer (IBC) is a unique clinical entity characterized by rapid onset of erythema and swelling of the breast often without an obvious breast mass. Many studies have examined and compared gene expression between IBC and non-IBC (nIBC), repeatedly finding clusters associated with receptor subtype, but no consistent gene signature associated with IBC has been validated. Here we compared microdissected IBC tumor cells to microdissected nIBC tumor cells matched based on estrogen and HER-2/neu receptor status. Gene expression analysis and comparative genomic hybridization were performed. An IBC gene set and genomic set were identified using a training set and validated on the remaining data. The IBC gene set was further tested using data from IBC consortium samples and publicly available data. Receptor driven clusters were identified in IBC; however, no IBC-specific gene signature was identified. Fifteen genes were correlated between increased genomic copy number and gene overexpression data. An expression-guided gene set upregulated in the IBC training set clustered the validation set into two clusters independent of receptor subtype but segregated only 75 % of samples in each group into IBC or nIBC. In a larger consortium cohort and in published data, the gene set failed to optimally enrich for IBC samples. However, this gene set had a high negative predictive value for excluding the diagnosis of IBC in publicly available data (100 %). An IBC enriched genomic data set accurately identified 10/16 cases in the validation data set. Even with microdissection, no IBC-specific gene signature distinguishes IBC from nIBC. Using microdissected data, a validated gene set was identified that is associated with IBC tumor cells. Inflammatory breast cancer comparative genomic hybridization data are presented, but a validated genomic data set that identifies IBC is not demonstrated. © 2013 Springer Science+Business Media New York. Source

Matsuo M.,Toho University | Shimodaira T.,Toho University | Kasama T.,Link Genomics Inc. | Hata Y.,Link Genomics Inc. | And 8 more authors.
PLoS ONE | Year: 2013

The completion of cytokinesis is crucial for mitotic cell division. Cleavage furrow ingression is followed by the breaking and resealing of the intercellular bridge, but the detailed mechanism underlying this phenomenon remains unknown. Katanin is a microtubule-severing protein comprised of an AAA ATPase subunit and an accessory subunit designated as p60 and p80, respectively. Localization of katanin p60 was observed at the midzone to midbody from anaphase to cytokinesis in rat cells, and showed a ring-shaped distribution in the gap between the inside of the contractile ring and the central spindle bundle in telophase. Katanin p60 did not bind with p80 at the midzone or midbody, and localization was shown to be dependent on microtubules. At the central spindle and the midbody, no microtubule growth plus termini were seen with katanin p60, and microtubule density was inversely correlated with katanin p60 density in the region of katanin p60 localization that seemed to lead to microtubule destabilization at the midbody. Inhibition of katanin p60 resulted in incomplete cytokinesis by regression and thus caused the appearance of binucleate cells. These results suggest that katanin p60 contributes to microtubule instability at the midzone and midbody and facilitates cytokinesis in rat cells. © 2013 Matsuo et al. Source

Masuko K.,Kinki University | Okazaki S.,Kinki University | Satoh M.,Kinki University | Tanaka G.,Kinki University | And 20 more authors.
PLoS ONE | Year: 2012

Background: CD44 is a major cellular receptor for hyaluronic acids. The stem structure of CD44 encoded by ten normal exons can be enlarged by ten variant exons (v1-v10) by alternative splicing. We have succeeded in preparing MV5 fully human IgM and its class-switched GV5 IgG monoclonal antibody (mAb) recognizing the extracellular domain of a CD44R1 isoform that contains the inserted region coded by variant (v8, v9 and v10) exons and is expressed on the surface of various human epithelial cancer cells. Methods and Principal Findings: We demonstrated the growth inhibition of human cancer xenografts by a GV5 IgG mAb reshaped from an MV5 IgM. The epitope recognized by MV5 and GV5 was identified to a v8-coding region by the analysis of mAb binding to various recombinant CD44 proteins by enzyme-linked immunosorbent assay. GV5 showed preferential reactivity against various malignant human cells versus normal human cells assessed by flow cytometry and immunohistological analysis. When ME180 human uterine cervix carcinoma cells were subcutaneously inoculated to athymic mice with GV5, significant inhibition of tumor formation was observed. Furthermore, intraperitoneal injections of GV5markedly inhibited the growth of visible established tumors from HSC-3 human larynx carcinoma cells that had been subcutaneously transplanted one week before the first treatment with GV5. From in vitro experiments, antibody-dependent cellular cytotoxicity and internalization of CD44R1 seemed to be possible mechanisms for in vivo anti-tumor activity by GV5. Conclusions: CD44R1 is an excellent molecular target for mAb therapy of cancer, possibly superior to molecules targeted by existing therapeutic mAb, such as Trastuzumab and Cetuximab recognizing human epidermal growth factor receptor family. © 2012 Masuko et al. Source

Discover hidden collaborations