Lincoln Agritech

Christchurch, New Zealand

Lincoln Agritech

Christchurch, New Zealand
SEARCH FILTERS
Time filter
Source Type

Post S.L.,Lincoln Agritech | Roten R.L.,Lincoln Agritech | Connell R.J.,Christchurch
Transactions of the ASABE | Year: 2017

The discharge coefficient (Cd) is a measure of how much of the pressure energy of a nozzle is converted into kinetic energy. With the discharge coefficient known, the exit velocity of the liquid sheet from the nozzle can be calculated from the pressure. It is important to be able to accurately calculate this nozzle exit velocity for use in initializing computational simulations such as AGDISP or CFD. The objective of this work was to measure the discharge coefficients for different types of flat-fan nozzles. In this work, a phase-Doppler interferometer was used to measure the exit velocity for standard, pre-orifice, and air-induction flat-fan nozzles, for rated sizes from 01 to 06, at pressures from 1 to 6 bar. From these velocities, discharge coefficients were calculated. The standard flat-fan nozzles had the highest discharge coefficients, while the air-induction nozzles had the lowest discharge coefficients. For a fixed type of nozzle design, the discharge coefficient increased slightly with the rated flow rate. The discharge coefficient decreased slightly with increasing pressure for a given nozzle. Much of the differences in droplet size for different types of nozzles can be explained by atomization theory as a result of the differences in discharge coefficients for the different nozzle designs.


Ferguson J.C.,Lincoln University at Christchurch | Hewitt A.J.,Lincoln Agritech | Eastin J.A.,Kamterter Products LLC | Connell R.J.,Lincoln Agritech | And 2 more authors.
Journal of Plant Protection Research | Year: 2014

Drift Reduction Technologies (DRTs) are becoming increasingly important for improving spray applications in many countries including New Zealand (NZ). Although there is a growing database on the performance of DRTs, there is no rating system showing the effectiveness of the DRT's performance. In Europe, DRTs are classified relative to current reference technologies as part of the rating systems used to establish spray drift risk reduction. We have recommended some key elements of such a comprehensive exposure risk reduction scheme for any country, based on prior and on-going research into the performance of specific DRTs in row, tree, and vine crops. Our intention was to create a rating system to determine the effectiveness of a given technology. This rating system would improve spray application practices and environmental stewardship for a wide range of crops and application scenarios.


Barkle G.F.,Aqualinc Research Ltd | Stenger R.,Lincoln Agritech | Wohling T.H.,Lincoln Agritech | Wohling T.H.,University of Tübingen
Soil Research | Year: 2014

To investigate the fate of nitrogen (N) from urine, dairy cow urine was amended with bromide (Br) and chloride (Cl), and applied onto a loamy sand soil with an underlying vadose zone of gritty coarse sands and pumice fragments with groundwater at ∼5.5m depth. Textural changes and hydrophobicity resulted in heterogeneous flow and high variability in the Cl, Br and N masses captured. Three forms of N derived from the urine, organic-N (org-N), ammonium-N (NH4-N) and nitrate-N (NO3-N), were measured at 0.4m depth. At 1.0m depth, effectively all measured N was NO3-N. At 4.2m, the mass of recovered N (average 33% of applied N, s.d. 21%), although solely speciated as NO3-N, was not significantly different from that at 0.4m (average 24.5% of applied N, s.d. 0.1%), suggesting that no substantial assimilation of NO3-N had occurred in this vadose zone. Below the interface of the Taupo Ignimbrite and the Palaeosol at 4.2m depth, recoveries of the Cl and Br tracers were negligible. In addition, the isotopic signatures (δ18O and δ15N) of the nitrate were different and the NO3-N concentrations were higher than in the upper vadose zone. These results all suggest that the Palaeosol was acting as a hydraulically limiting layer resulting in lateral unsaturated flow occurring at this interface. The fact that no nitrate assimilation was observed in this field study, despite previous laboratory studies showing substantial assimilative capacity, underlines that that the nitrate assimilative capacity in the vadose zone is a function of both hydrological and biogeochemical factors. © CSIRO 2014.

Loading Lincoln Agritech collaborators
Loading Lincoln Agritech collaborators