Entity

Time filter

Source Type


Restrepo-Ortiz C.X.,Limnological Observatory of the Pyrenees LOOP Biogeodynamics and Biodiversity Interactions Group | Casamayor E.O.,Limnological Observatory of the Pyrenees LOOP Biogeodynamics and Biodiversity Interactions Group
Environmental Microbiology Reports | Year: 2013

Quantitative environmental distribution of two widely distributed uncultured freshwater Euryarchaeota with unknown functional role was explored by newly designed quantitative PCR primers targeting the 16S rRNA gene of clades Miscellaneous Euryarchaeota Group (MEG, containing the groups pMC2A384 and VALII/Eury4) and Deep-Sea Euryarchaeotal Groups (DSEG, targeting the cluster named VALIII containing the DHVE-3/DSEG, BC07-2A-27/DSEG-3 and DSEG-2 groups), respectively. The summer surface plankton of 28 lakes was analysed, and one additional dimictic deep alpine lake, Lake Redon, was temporally and vertically surveyed covering seasonal limnological variability. A trophic range between 0.2 and 5.2μgl-1 Chl a, and pH span from 3.8 to 9.5 was explored at altitudes between 632 and 2590m above sea level. The primers showed to be highly selective with c. 85% coverage and 100% specificity. Only pH significantly explained the changes observed in gene abundances and environment. In Lake Redon, DSEG bloomed in deep stratified waters both in summer and early spring, and MEG at intermediate depths during the ice-cover period. Overall, MEG and DSEG showed a differential ecological distribution although correlational analyses indicated lack of coupling of both Euryarchaeota with phytoplankton (chlorophyll a). However, an intriguing positive and significant relationship was found between DSEG and putative ammonia oxidizing thaumarchaeota. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology. Source


Restrepo-Ortiz C.X.,Limnological Observatory of the Pyrenees LOOP Biogeodynamics and Biodiversity Interactions Group | Auguet J.-C.,Limnological Observatory of the Pyrenees LOOP Biogeodynamics and Biodiversity Interactions Group | Casamayor E.O.,Limnological Observatory of the Pyrenees LOOP Biogeodynamics and Biodiversity Interactions Group
Environmental Microbiology | Year: 2014

The annual dynamics of three different ammonia-oxidizing archaea (AOA) ecotypes (amoA gene) and of the SAGMGC-1 (Nitrosotalea-like aquatic Thaumarchaeota) group (16S rRNA gene) were studied by newly designed specific primers and quantitative polymerase chain reaction analysis in a deep oligotrophic high mountain lake (Lake Redon, Limnological Observatory of the Pyrenees, Spain). We observed segregated distributions of the main AOA populations, peaking separately in time and space, and under different ammonia concentrations and irradiance conditions. Strong positive correlation in gene abundances was found along the annual survey between 16S rRNA SAGMAGC-1 and one of the amoA ecotypes suggesting the potential for ammonia oxidation in the freshwater SAGMAGC-1 clade. We also observed dominance of Nitrosotalea-like ecotypes over Nitrosopumilus-like (Marine Group 1.1a) and not the same annual dynamics for the two thaumarchaeotal clades. The fine scale segregation in space and time of the different AOA ecotypes indicated the presence of phylogenetically close but ecologically segregated AOA species specifically adapted to specific environmental conditions. It remains to be elucidated what would be such environmental drivers. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology. Source

Discover hidden collaborations