LightLab Imaging Inc.

Westford, MA, United States

LightLab Imaging Inc.

Westford, MA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
LightLab Imaging Inc. | Date: 2016-11-18

The disclosure relates generally to the field of vascular system and peripheral vascular system data collection, imaging, image processing and feature detection relating thereto. In part, the disclosure more specifically relates to methods for detecting position and size of contrast cloud in an x-ray image including with respect to a sequence of x-ray images during intravascular imaging. Methods of detecting and extracting metallic wires from x-ray images are also described herein such as guidewires used in coronary procedures. Further, methods for of registering vascular trees for one or more images, such as in sequences of x-ray images, are disclosed. In part, the disclosure relates to processing, tracking and registering angiography images and elements in such images. The registration can be performed relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT) or intravascular ultrasound (IVUS).


Patent
LightLab Imaging Inc. | Date: 2016-11-18

The disclosure relates generally to the field of vascular system and peripheral vascular system data collection, imaging, image processing and feature detection relating thereto. In part, the disclosure more specifically relates to methods for detecting position and size of contrast cloud in an x-ray image including with respect to a sequence of x-ray images during intravascular imaging. Methods of detecting and extracting metallic wires from x-ray images are also described herein such as guidewires used in coronary procedures. Further, methods for of registering vascular trees for one or more images, such as in sequences of x-ray images, are disclosed. In part, the disclosure relates to processing, tracking and registering angiography images and elements in such images. The registration can be performed relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT) or intravascular ultrasound (IVUS).


Patent
LightLab Imaging Inc. | Date: 2016-11-18

The disclosure relates generally to the field of vascular system and peripheral vascular system data collection, imaging, image processing and feature detection relating thereto. In part, the disclosure more specifically relates to methods for detecting position and size of contrast cloud in an x-ray image including with respect to a sequence of x-ray images during intravascular imaging. Methods of detecting and extracting metallic wires from x-ray images are also described herein such as guidewires used in coronary procedures. Further, methods for of registering vascular trees for one or more images, such as in sequences of x-ray images, are disclosed. In part, the disclosure relates to processing, tracking and registering angiography images and elements in such images. The registration can be performed relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT) or intravascular ultrasound (IVUS).


Patent
LightLab Imaging Inc. and Adler | Date: 2017-07-19

The disclosure relates to systems for imaging a blood vessel using intravascular image data such as optical coherence tomography data and extravascular image data such as angiography data and methods to calibrate such systems. In one embodiment, multiple calibration trials are performed to determine a plurality of time lag values. A minimum time lag value is used to align intravascular image data and extravascular time lag data in one embodiment. The calibration trials may be performed ex vivo.


Patent
LightLab Imaging Inc. | Date: 2017-05-31

In part, the disclosure relates to computer-based methods, devices, and systems suitable for pre-stent planning, stent planning and post-stent planning using one or more computing devices. In one embodiment, a method generates one or more stent profiles, such as a target stent profile, that are user configurable during a pre-stent planning stage by selecting one or more frames. The method performs a comparative analysis of the previously set target stent profile relative to a vessel lumen region post stent deployment. The method and related user interfaces can alert a user to move, remove, reposition, or inflate a stent. The location of jailed side branches can also be identified and displayed based upon the comparative analysis. Parameters that change based on the outcome of the stent deployment can be displayed in terms of the predicted parameter value and the value that is measured or determined after stent deployment.


Patent
LightLab Imaging Inc. | Date: 2016-11-22

In part, the disclosure relates to shadow detection and shadow validation relative to data sets obtained from an intravascular imaging data collection session. The methods can use locally adaptive thresholds and scan line level analysis relative to candidate shadow regions to determine a set of candidate shadows for validation or rejection. In one embodiment, the shadows are stent strut shadows, guidewire shadows, side branch shadows or other shadows.


In one embodiment, the invention relates to a processor based method for generating positional and other information relating to a stent in the lumen of a vessel using a computer. The method includes the steps of generating an optical coherence image data set in response to an OCT scan of a sample containing at least one stent; and identifying at least one one-dimensional local cue in the image data set relating to the position of the stent.


Patent
LightLab Imaging Inc. | Date: 2016-07-25

In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and detected stent struts. Levels of stent malapposition can be defined using a user interface such as a slider, toggle, button, field, or other interface to specify how indicia are displayed relative to detected stent struts. In addition, the disclosure relates to methods to automatically provide a two or three-dimensional visualization suitable for assessing side branch and/or guide wire location during stenting. The method can use one or more a computed side branch location, a branch takeoff angle, one or more stent strut locations, and one or more lumen contours.


Patent
LightLab Imaging Inc. | Date: 2016-07-25

In part, the disclosure relates to methods of guidewire detection in intravascular data sets such as scan lines, frames, images and combinations thereof. Methods of generating one or more indicia of a guidewire in a representation of blood vessel are also features of the disclosure. A carpet view is generated in one embodiment and regions of relatively higher contrast are detected as candidate guidewire regions. In one embodiment, the disclosure relates to selective removal of guidewire segments from a set of intravascular data and the display of a representation of a blood vessel via a user interface. Representations of a guidewire can be toggled on and off in one embodiment.


In part, the invention relates to processing, tracking and registering angiography images and elements in such images relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT). Registration between such imaging modalities is facilitated by tracking of a marker of the intravascular imaging probe performed on the angiography images obtained during a pullback. Further, detecting and tracking vessel centerlines is used to perform a continuous registration between OCT and angiography images in one embodiment.

Loading LightLab Imaging Inc. collaborators
Loading LightLab Imaging Inc. collaborators