Time filter

Source Type

Wang Y.,Northeastern University China | Wang Y.,Liaoning Key Laboratory of Metallurgical Resources Recycling Science | Wang Y.,Liaoning Provincial Universities | Xue X.,Northeastern University China | And 5 more authors.
Chinese Journal of Chemical Engineering | Year: 2014

Antibacterial activity of boron-doped TiO2 (B/TiO2) nano-materials under visible light irradiation and in the dark was investigated. A simple sol-gel method was used to synthesize TiO2 nano-materials. X-ray diffraction pattern of B/TiO2 nano-materials represents the diffraction peaks relating to the crystal planes of TiO2 (anatase and rutile). X-ray photoelectron spectroscopy result shows that part of boron ions incorporates into TiO2 lattice to form a possible chemical environment like Ti - O - B and the rest exist in the form of B 2O3. The study on antibacterial effect of B/TiO 2 nano-materials on fungal Candida albicans (ATCC10231), Gram-negative Escherichia coli (ATCC25922) and Gram-positive Staphylococcus aureus (ATCC6538) shows that the antibacterial action is more significant on Candida albicans than on Escherichia coli and Staphylococcus aureus. Under visible light irradiation, the antibacterial activity is superior to that in the dark. © 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP). Source

Xue X.,Northeastern University China | Xue X.,Liaoning Key Laboratory of Metallurgical Resources Recycling Science | Xue X.,Liaoning Provincial Universities | Wang Y.,Northeastern University China | And 5 more authors.
Applied Surface Science | Year: 2013

Boron-doped TiO2 (B/TiO2) nano-materials were synthesized by a sol-gel method and characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FT-IR) and UV-vis diffuse reflectance spectra (DRS). With the test of bacterial inhibition zone, the antibacterial properties of B/TiO2 nano-materials on Escherichia coli were investigated. The results show that the structure of TiO2 could be transformed from amorphous to anatase and then to rutile by increasing calcination temperature; part of the boron atoms probably have been weaved into the interstitial TiO2 structure or incorporated into the TiO 2 lattice through occupying O sites, whereas others exist as B 2O3. The results of antibacterial experiment under visible light irradiation show that the B/TiO2 nano-materials exhibit enhanced antibacterial efficiency compared with non-doped TiO2. Ultimately, the action mechanism of B/TiO2 doping is discussed. © 2012 Elsevier B.V. All rights reserved. Source

Lei X.F.,Northeastern University China | Lei X.F.,Liaoning Key Laboratory of Metallurgical Resource Recycling Science | Lei X.F.,Liaoning Provincial Universities | Xue X.X.,Northeastern University China | And 10 more authors.
Applied Surface Science | Year: 2015

The (N, S and C) co-doped TiO2 samples (NSC-TiO2) were synthesized by the sol-gel method combining with the high energy ball milling method calcined at the different temperature (400-700 °C), employing butyl titanate as the titanium source and thiourea as the doping agent. The structures of NSC-TiO2 samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), X-ray photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetry and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the (N, S and C) co-doping and the calcination temperature played important role on the microstructure and photocatalytic activity of the samples. According to XPS spectra, sulfur was mainly attributed to the TiOS bond; nitrogen was ascribed to the TiON and TiN bonds; carbon was assigned to the TiOC bond in the NSC-TiO2 samples. (N, S and C) co-doped TiO2 samples calcinated at 500 °C exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of its enhancing crystallization of anatase and (N, S and C) co-doping. © 2015 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations