Entity

Time filter

Source Type


Li W.,Nankai University | Li W.,Tianjin Academy of Environmental Protection Science | Peng Y.,Liaoning Provincial Environmental Monitoring Center | Bai Z.,Nankai University
Journal of Environmental Sciences | Year: 2010

Aliphatic hydrocarbons (n-alkanes) associated with fine particulate matter were determined in the ambient air of urban, industrial and coastal areas in Tianjin, China, where intensive coal burning for industrial and domestic purpose takes place. n-Alkane homologues from C12 to C35 were quantifiable in all samples with C20-C31 being the most abundant species. Average concentrations of the total n-alkanes were 148.7, 250.1 and 842.0 ng/m3 in July, April and January, respectively. Seasonal variations were mainly attributed to ambient temperature changes and coal combustion for residential heating. Among the three studied areas, the highest levels of n-alkanes were observed in the industrial complex in winter and spring, but in summer the coastal alkane concentration moved up to the highest. A mono-modal distribution for n-alkanes was observed in spring and summer with odd carbon number predominance and a maximum centered at C27-C31, suggesting the release of plant wax into the atmosphere. The bimodal distribution with maxima at C22 and C26 observed in winter indicated a substantial influence of fossil fuel sources. All the CPIs (CPI1, CPI2, CPI3) values, varying between 0.64 and 1.97, indicated the influence of anthropogenic emissions on fine organic aerosols. The estimated contributions of plant wax to total n-alkanes were on average of 12.9%, 19.1% and 26.1% for winter, spring and summer, respectively. © 2010 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Source


Li W.,Nankai University | Li W.,Tianjin Academy of Environmental science | Peng Y.,Liaoning Provincial Environmental Monitoring Center | Shi J.,Nankai University | And 3 more authors.
Atmospheric Environment | Year: 2011

In this study, concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM 10 were measured to examine the status, characteristics and sources of atmospheric PAH pollution in the industrial Northeast Region of China. Mean concentrations of total PAHs were 65.5, 40.0, 73.0 and 436.7 ng m -3 in the four seasons respectively. The calculated BaPeq concentrations in winter all exceeded the national standard, imposing serious PAH exposure risk. PAH concentrations varied between the cities, but PAH concentrations in different functional areas within a city did not show significant difference. In general, particulate PAH profiles were dominated by 4- and 5-ring compounds. Elevated proportions of 3-ring PAHs and 5-ring PAHs were found in winter and in summer respectively. Diagnostic ratios and principal component analysis (PCA) were used to identify potential sources of PAHs. Coal combustion activities were the main contributors of particle-associated PAHs in this region. © 2011 Elsevier Ltd. All rights reserved. Source


Shi J.,Nankai University | Peng Y.,Liaoning Provincial Environmental Monitoring Center | Li W.,Nankai University | Qiu W.,Liaoning Provincial Environmental Monitoring Center | And 3 more authors.
Aerosol and Air Quality Research | Year: 2010

PM10 samples were collected at six sampling sites in city center of Tianjin from April 2008 to January 2009. The concentrations of 17 selected polycyclic aromatic hydrocarbons (PAHs) in PM10 were quantified. Spatial and seasonal variations of PAHs were characterized. The dominant PAHs in PM10 samples were fluoranthene, pyrene, benz[a] anthracene, phenanthrene, chrysene, benzo[b]fluoranthene, anthracene, indeno[1,2,3-cd]pyrene and benzo[a]pyrene, accounting for above 85% of total PAHs. The total PAHs concentrations of the six sampling sites ranged from 23.4 to 513 ng/m 3. Spatial variations were predominantly due to the different strengths of source emission. The total PAHs concentrations at Dongli Monitoring Station (DL) site and Beichen Science and Technology Park (BC) site were higher than those at other four sites in heating period, while those at Meijiang community (MJ) site and Beichen Science and Technology Park (BC) site were higher in no-heating period. Higher PAHs concentrations during heating period and lower concentrations during no-heating period were observed at the six sampling sites, which may be caused by the stronger emissions from stationary combustion sources in heating period and the quicker air dispersion, washout effects, photodegradation and higher percentage in the air in vapor phase in no-heating period. The PAHs concentrations in gaseous phase were predicted with gas/particle partition model, and the BaP and BaP equivalency results indicated that the health risk of gas and particle phase PAHs to human in Tianjin were higher than that in other cities. The contributions from potential sources to PAHs in PM10 were estimated by the diagnostic ratios between PAHs and principal component analysis (PCA). In whole sampling period, coal combustion was found to the predominant contributor of PM10-bound PAHs, followed by vehicles emission and wood combustion. Copyright © Taiwan Association for Aerosol Research. Source

Discover hidden collaborations