Liaoning Academy of Forestry science

Shenyang, China

Liaoning Academy of Forestry science

Shenyang, China
SEARCH FILTERS
Time filter
Source Type

Zhu R.,Liaoning University | Hou Y.,Liaoning University | Sun Y.,Liaoning University | Li T.,Shenyang University | And 3 more authors.
Lipids | Year: 2017

Haw pectin penta-oligogalacturonide (HPPS), purified from the hydrolysates of haw pectin, has important role in decreasing hepatic cholesterol accumulation and promoting bile acids (BA) excretion in the feces of mice fed a high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on BA reabsorption in ileum and biosynthesis in liver of mice. Results showed that HPPS increased fecal BA output by approximately 110%, but decreased ileal BA and the total BA pool size by approximately 47 and 36%, respectively, compared to HCD. Studies of molecular mechanism revealed that HPPS significantly decreased the mRNA and protein levels of farnesoid X receptor (FXR) in the small intestine of mice and inactivated the fibroblast growth factor 15 (FXR-FGF15) axis, which increased the mRNA and protein levels of CYP7A1 by approximately 204 and 104%, respectively, compared to HCD. Interestingly, the mRNA and protein levels of apical sodium-dependent bile acid transporter (ASBT) in the small intestine were approximately 128 and 73% higher in HPPS-fed mice than those in HCD-fed mice, respectively. However, no significant difference was detected for ASBT expression between HCD group and BA sequestrant cholestyramine group. These findings indicate that HPPS can suppress intestinal BA reabsorption and promoting hepatic BA biosynthesis. We speculated that HPPS could be ASBT competitive inhibitor rather than BA sequestrant in inhibiting BA reabsorption in ileum and improving cholesterol metabolism. © 2017 AOCS


Zhu R.-G.,Liaoning University | Sun Y.-D.,Liaoning University | Hou Y.-T.,Liaoning University | Fan J.-G.,Liaoning Academy of Forestry science | And 2 more authors.
Chemico-Biological Interactions | Year: 2017

Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. © 2017 Elsevier B.V.


Wei J.,Liaoning University | Zhang G.,Chinese Academy of Agricultural Sciences | Zhang X.,Liaoning University | Xu D.,Liaoning University | And 3 more authors.
Journal of Agricultural and Food Chemistry | Year: 2017

Aging is the greatest risk factor for most neurodegenerative diseases, which is associated with decreasing cognitive function and significantly affecting life quality in the elderly. Computational analysis suggested that 4 anthocyanins from chokeberry fruit increased Klotho (aging-suppressor) structural stability, so we hypothesized that chokeberry anthocyanins could antiaging. To explore the effects of anthocyanins treatment on brain aging, mice treated with 15 or 30 mg/kg anthocyanins by gavage and injected D-galactose accelerated aging per day. After 8 weeks, cognitive and noncognitive components of behavior were determined. Our studies showed that anthocyanins blocked age-associated cognitive decline and response capacity in senescence accelerated mice. Furthermore, mice treated with anthocyanins-supplemented showed better balance of redox systems (SOD, GSH-PX, and MDA) in all age tests. Three major monoamines were norepinephrine, dopamine, and 5-hydroxytryptamine, and their levels were significantly increased; the levels of inflammatory cytokines (COX2, TGF-β1, and IL-1) transcription and DNA damage were decreased significantly in brains of anthocyanins treated mice compared to aged models. The DNA damage signaling pathway was also regulated with anthocyanins. Our results suggested that anthocyanins was a potential approach for maintaining thinking and memory in aging mice, possibly by regulating the balance of redox system and reducing inflammation accumulation, and the most important factor was inhibiting DNA damage. © 2017 American Chemical Society.


Li T.-P.,Liaoning University | Li T.-P.,Engineering Technology Research Center for Food Bioprocessing of Liaoning Province | Zhu R.-G.,Liaoning University | Zhu R.-G.,Engineering Technology Research Center for Food Bioprocessing of Liaoning Province | And 6 more authors.
Journal of Agricultural and Food Chemistry | Year: 2013

The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases. © 2013 American Chemical Society.


Zhu R.,Liaoning University | Li T.,Liaoning University | Dong Y.,Liaoning University | Liu Y.,Liaoning University | And 4 more authors.
Food Research International | Year: 2013

The effects of haw pectin pentasaccharide (HPPS) on hypercholesterolemia were investigated in high-fat fed mice. HPPS significantly decreased the levels of serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-c), and hepatic TC. It also significantly decreased the activities and gene expressions of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) and acyl-coenzyme A: cholesterol acyl-transferase (ACAT) in the liver. While, the serum high density lipoprotein cholesterol (HDL-c), fecal bile acids, and the activity and gene expressions of cholesterol 7α-hydroxylase (CYP7A1) were significantly increased by HPPS administration. Moreover, HPPS tended to increase the fecal TC level and to down-regulate the expressions of sterol regulatory element-binding protein 2 (SREBP-2) and LDL receptor in the liver, but no statistical significance was detected. The results revealed that HPPS have great potential in the development of functional food to improve cholesterol metabolism. © 2013 Elsevier Ltd.


Zhu R.-G.,Liaoning University | Sun Y.-D.,Liaoning University | Li T.-P.,Liaoning University | Chen G.,Liaoning Academy of Forestry science | And 7 more authors.
Chemico-Biological Interactions | Year: 2015

This study aims to compare the effects of feeding haw pectin (HP), haw pectin hydrolyzates (HPH), and haw pectin pentasaccharide (HPPS) on the cholesterol metabolism of hypercholesterolemic hamsters induced by high-cholesterol diets. The animals were fed a standard diet (SD), high-cholesterol diet (HCD), or HCD plus HP, HPH, or HPPS at a dose of 300 mg/kg body weight for 4 weeks. Results showed that HPPS was more effective than HP and HPH in decreasing the body weight gain (by 38.2%), liver weight (by 16.4%), and plasma and hepatic total cholesterol (TC; by 23.6% and 27.3%, respectively) of hamsters. In addition, the bile acid levels in the feces were significantly higher by 39.8% and 132.8% in the HPH and HPPS groups than in the HCD group. Such changes were not noted in the HP group. However, the HP group had higher cholesterol excretion capacities than the HPH and HPPS groups by inhibiting cholesterol absorption in the diet, with a 21.7% increase in TC excretion and a 31.1% decrease in TC absorption. Thus, HPPS could be a promising anti-atherogenic dietary ingredient for the development of functional food to improve cholesterol metabolism.


PubMed | Liaoning University and Liaoning Academy of Forestry science
Type: | Journal: Chemico-biological interactions | Year: 2015

This study aims to compare the effects of feeding haw pectin (HP), haw pectin hydrolyzates (HPH), and haw pectin pentasaccharide (HPPS) on the cholesterol metabolism of hypercholesterolemic hamsters induced by high-cholesterol diets. The animals were fed a standard diet (SD), high-cholesterol diet (HCD), or HCD plus HP, HPH, or HPPS at a dose of 300mg/kg body weight for 4weeks. Results showed that HPPS was more effective than HP and HPH in decreasing the body weight gain (by 38.2%), liver weight (by 16.4%), and plasma and hepatic total cholesterol (TC; by 23.6% and 27.3%, respectively) of hamsters. In addition, the bile acid levels in the feces were significantly higher by 39.8% and 132.8% in the HPH and HPPS groups than in the HCD group. Such changes were not noted in the HP group. However, the HP group had higher cholesterol excretion capacities than the HPH and HPPS groups by inhibiting cholesterol absorption in the diet, with a 21.7% increase in TC excretion and a 31.1% decrease in TC absorption. Thus, HPPS could be a promising anti-atherogenic dietary ingredient for the development of functional food to improve cholesterol metabolism.


Han H.,Chinese Academy of Forestry | Sun X.M.,Chinese Academy of Forestry | Xie Y.H.,Chinese Academy of Forestry | Feng J.,Liaoning Academy of Forestry science | Zhang S.G.,Chinese Academy of Forestry
Silvae Genetica | Year: 2013

Adventitious root development is crucial for cutting propagation in hybrid larch. In the present study semilignified cuttings of Larix kaempferi × L. olgensis clones were used to study the morphological and anatomical changes during the different development stages and compare the changes in contents of endogenous phytohormone in two clones with evidently different rooting capacity (25-5 and 23-12), and the effects of exogenous Indole-3-Butyric Acid (IBA) on phytohormone content of a very low native rooting capacity clone (8-9) during the development of adventitious roots. The results showed that the development of adventitious root in semi-lignified cuttings involves three key stages: root cell dedifferentiation and division (14-18 DAC); meristem formation and development (25-35 DAC); root formation and elongation (50-55 DAC). The endogenous phytohormones play a key role during adventitious root development. For 25-5 and 23-12, the level of endogenous phytohormones, especially the ABA content, has an important effect on rooting capacity. For the effects of IBA on 8-9, except lower ABA content, the temporary peak of IAA on the 1 DAC was important for initiating the rooting process. The ratio of (IAA + GA 3+ ZR)/ABA can be used as an indicator of rooting capacity. The anatomical and physiological data described here for semi-lignified cuttings of L. kaempferi × L. olgensis clones improves our knowledge of adventitious roots development. Our study will also benefit future research on examining the molecular mechanisms of the adventitious roots development in hybrid larch.


Sun S.-P.,General Station of Forest Pest Management | Luan Q.-S.,Liaoning Academy of Forestry Science | Sheng M.-L.,General Station of Forest Pest Management
Journal of Hymenoptera Research | Year: 2012

A new species, Triclistus strobilius sp. n., belonging to the subfamily Metopiinae (Hymenoptera, Ichneumonidae), reared from Dioryctria pryeri Ragonot, D. rubella Hampson and Gravitarmata margarotana (Hein) in Liaoning, Hunan provinces and Beijing, is reported and described. Illustrations of the new species are provided. © Flávio O. Francisco et al.


Han H.,Chinese Academy of Forestry | Sun X.,Chinese Academy of Forestry | Xie Y.,Chinese Academy of Forestry | Feng J.,Liaoning Academy of Forestry science | Zhang S.,Chinese Academy of Forestry
BMC Plant Biology | Year: 2014

Background: Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrixassisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. Results: We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. Conclusions: These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species. © 2014 Han et al.

Loading Liaoning Academy of Forestry science collaborators
Loading Liaoning Academy of Forestry science collaborators