Time filter

Source Type

Gallo A.,Catholic University of Louvain | Dimiziani A.,Catholic University of Louvain | Damblon J.,Catholic University of Louvain | Michot B.,Catholic University of Louvain | And 4 more authors.
Neuroscience Research | Year: 2015

Spinal glial reactivity has been strongly implicated in pain that follows peripheral nerve injury. Among the many therapeutic agents that have been tested for anti-allodynia through immune modulation is the atypical methylxanthine propentofylline. While propentofylline shows a potent anti-allodynia effect after nerve transection injury, we here demonstrate that, when propentofylline is used intrathecally at the effective immune-modulatory dose, allodynia after rat nerve crush injury is completely preserved. Microglial/macrophage Iba-1 and astrocytic GFAP expression, increased in the dorsal horn of nerve crushed animals, was, however, effectively attenuated by propentofylline. Effective modulation of spinal glial reactivity is, thus, no assurance for anti-allodynia. © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society.

Lobysheva I.I.,Catholic University of Louvain | Biller P.,Catholic University of Louvain | Gallez B.,Leuven Drug Research Institute | Beauloye C.,Catholic University of Louvain | Balligand J.-L.,Catholic University of Louvain
PLoS ONE | Year: 2013

Impaired nitric oxide (NO)-dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme) may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR) spectroscopy to identify the 5-coordinate α-HbNO (HbNO) concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT). Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects). Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals.Results:Mean erythrocyte HbNO concentration at baseline was 219+/-12 nmol/L (n = 50). HbNO levels and reactive hyperemia (RH) indexes were higher in female (free of contraceptive pills) than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1-2 min of post-occlusion hyperemia (120+/-8% of basal levels); post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH) indexes (r = 0.58; P<0.0001 for basal HbNO).Conclusion:The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation. © 2013 Lobysheva et al.

Passo Tsamo C.V.,Institute Des Science Of La Vie | Passo Tsamo C.V.,Institute of Medical Research and Medicinal Plant Studies | Herent M.-F.,Leuven Drug Research Institute | Tomekpe K.,CIRAD - Agricultural Research for Development | And 5 more authors.
Food Chemistry | Year: 2015

The present study investigated the phenolic profiles of the pulp and peel of nine plantain cultivars and compared them to those of two dessert bananas of commercial interest (Grand Nain and Gros Michel), alongside a newly created hybrid, resistant to black sigatoka disease (F568). Identification and quantification of phenolic compounds were performed by means of HPLC-ESI-HR-MS and HPLC-DAD. Hydroxycinnamic acids, particularly ferulic acid-hexoside with 4.4-85.1 μg/g of dry weight, dominated in the plantain pulp and showed a large diversity among cultivars. Flavonol glycosides were predominant in plantain peels, rutin (242.2-618.7 μg/g of dry weight) being the most abundant. A principal component analysis on the whole data revealed that the phenolic profiles of the hybrid, the dessert bananas and the pure plantains differed from each other. Plantain pulps and peels appeared as good sources of phenolics, which could be involved in the health benefits associated with their current applications. © 2014 Elsevier Ltd. All rights reserved.

Geurts L.,Leuven Drug Research Institute | Geurts L.,Catholic University of Louvain | Neyrinck A.M.,Catholic University of Louvain | Delzenne N.M.,Catholic University of Louvain | And 4 more authors.
Beneficial Microbes | Year: 2014

Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and activity are discussed in the context of obesity and type 2 diabetes. © 2014 Wageningen Academic Publishers.

Lai T.N.H.,Institute Des Science Of La Vie | Lai T.N.H.,Hanoi University of Agriculture | Herent M.-F.,Leuven Drug Research Institute | Quetin-Leclercq J.,Leuven Drug Research Institute | And 4 more authors.
Food Chemistry | Year: 2013

The sim fruit (Rhodomyrtus tomentosa) has long been used in folk medicine to treat diarrhoea, dysentery, and to boost the immune system. The purpose of this work was to determine its phenolic profile and to evaluate the changes of content during maturation, as well as the variations induced by environmental conditions. Using HPLC-ESI-HR-MS, 19 phenolic compounds (PCs) were tentatively characterised and included stilbenes and ellagitannins as major components, followed by anthocyanins, flavonols, and gallic acid. PCs were then further quantified by HPLC-DAD. Piceatannol, a promising health-promoting stilbene component, was the major PC in the fruit with a concentration of 2.3 mg/g dry weight at full maturity stage. This concentration is 1000-2000 times higher than that of red grapes, a major source of stilbene in the human diet. During maturation, the contents in piceatannol and other stilbenes, ellagitannins, and flavonols decreased while the anthocyanin content increased. Shade-grown sim fruits showed significantly higher piceatannol levels than sun-exposed fruits. Taken together, these findings highlight the potential of sim, an under-utilised plant species from South-East Asia, as a source of health-promoting fruits. © 2012 Elsevier Ltd. All rights reserved.

Discover hidden collaborations