Time filter

Source Type

Martinez-Rodriguez P.,Autonomous University of Madrid | Hernandez-Perez M.,Leon Institute of Technology | Bella J.L.,Autonomous University of Madrid
Microbial Ecology | Year: 2013

We have recently detected the endosymbiont Wolbachia in multiple individuals and populations of the grasshopper Chorthippus parallelus (Orthoptera: acrididae). This bacterium induces reproductive anomalies, including cytoplasmic incompatibility. Such incompatibilities may help explain the maintenance of two distinct subspecies of this grasshopper, C. parallelus parallelus and C. parallelus erythropus, which are involved in a Pyrenean hybrid zone that has been extensively studied for the past 20 years, becoming a model system for the study of genetic divergence and speciation. To evaluate whether Wolbachia is the sole bacterial infection that might induce reproductive anomalies, the gonadal bacterial community of individuals from 13 distinct populations of C. parallelus was determined by denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene fragments and sequencing. The study revealed low bacterial diversity in the gonads: a persistent bacterial trio consistent with Spiroplasma sp. and the two previously described supergroups of Wolbachia (B and F) dominated the gonad microbiota. A further evaluation of the composition of the gonad bacterial communities was carried out by whole cell hybridization. Our results confirm previous studies of the cytological distribution of Wolbachia in C. parallelus gonads and show a homogeneous infection by Spiroplasma. Spiroplasma and Wolbachia cooccurred in some individuals, but there was no significant association of Spiroplasma with a grasshopper's sex or with Wolbachia infection, although subtle trends might be detected with a larger sample size. This information, together with previous experimental crosses of this grasshopper, suggests that Spiroplasma is unlikely to contribute to sex-specific reproductive anomalies; instead, they implicate Wolbachia as the agent of the observed anomalies in C. parallelus. © 2013 Springer Science+Business Media New York. Source

Rodriguez-Lazaro D.,University of Burgos | Hernandez M.,Leon Institute of Technology
Current Issues in Molecular Biology | Year: 2013

Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons. Source

Avila M.,Instituto Nacional Of Investigacion Y Tecnologia Agraria Y Alimentaria Inia | Gomez-Torres N.,Instituto Nacional Of Investigacion Y Tecnologia Agraria Y Alimentaria Inia | Hernandez M.,Leon Institute of Technology | Garde S.,Instituto Nacional Of Investigacion Y Tecnologia Agraria Y Alimentaria Inia
International Journal of Food Microbiology | Year: 2014

The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7. d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5. mM) and nisin (MIC values 0.05-12.5. μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values. <. 0.20-400. μg/ml) and sodium nitrite (MIC values 18.75-150. μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. © 2013 Elsevier B.V. Source

Rodriguez-Lazaro D.,University of Burgos | Cook N.,UK Environment Agency | Hernandez M.,Leon Institute of Technology
Current Issues in Molecular Biology | Year: 2013

A principal consumer demand is a guarantee of the safety and quality of food. The presence of foodborne pathogens and their potential hazard, the use of genetically modified organisms (GMOs) in food production, and the correct labelling in foods suitable for vegetarians are among the subjects where society demands total transparency. The application of controls within the quality assessment programmes of the food industry is a way to satisfy these demands, and is necessary to ensure efficient analytical methodologies are possessed and correctly applied by the Food Sector. The use of real-time PCR has become a promising alternative approach in food diagnostics. It possesses a number of advantages over conventional culturing approaches, including rapidity, excellent analytical sensitivity and selectivity, and potential for quantification. However, the use of expensive equipment and reagents, the need for qualified personnel, and the lack of standardized protocols are impairing its practical implementation for food monitoring and control. Source

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-11-2015 | Award Amount: 5.99M | Year: 2016

WASTE2FUELS aims to develop next generation biofuel technologies capable of converting agrofood waste (AFW) streams into high quality biobutanol. Butanol is one of the most promising biofuels due to its superior fuel properties compared to current main biofuels, bioethanol and biodiesel. In addition to its ability to reduce carbon emissions, its higher energy content (almost 30% more than ethanol), its ability to blend with both gasoline and diesel, its lower risk of separation and corrosion, its resistance to water absorption, allowing it to be transported in pipes and carriers used by gasoline, it offers a very exciting advantage for adoption as engines require almost no modifications to use it. The main WASTE2FUELS innovations include: Development of novel pretreatment methods for converting AFW to an appropriate feedstock for biobutanol production thus dramatically enlarging current available biomass for biofuels production Genetically modified microorganisms for enhancing conversion efficiencies of the biobutanol fermentation process Coupled recovery and biofilm reactor systems for enhancing conversion efficiencies of Acetone-Butanol-Ethanol fermentation Development of new routes for biobutanol production via ethanol catalytic conversion Biobutanol engine tests and ecotoxicological assessment of the produced biobutanol Valorisation of the process by-products Development of an integrated model to optimise the waste-to-biofuel conversion and facilitate the industrial scale-up Process fingerprint analysis by environmental and techno-economic assessment Biomass supply chain study and design of a waste management strategy for rural development By valorising 50% of the unavoidable and undervalorised AFW as feedstock for biobutanol production, WASTE2FUELS could divert up to 45 M tonnes of food waste from EU landfills, preventing 18 M tonnes of GHG and saving almost 0.5 billion litres of fossil fuels.

Discover hidden collaborations