Lenzing Fibers

Lenzing, Austria

Lenzing Fibers

Lenzing, Austria
SEARCH FILTERS
Time filter
Source Type

When I offered to write a Pump Handle review of Dr. Paul Blanc’s new book Fake Silk, I had no idea that it would make me question the clothes I was wearing, which I believe to be “environmentally sustainable.”  I didn’t even put that connection together after hearing Blanc speak at a recent book-signing party in Los Angeles. But at the party, Dr. Blanc mentioned that “rayon” (or “fake silk”) fibers had once been made in Axis, Alabama at a plant that went through several owners with one of its novel rayon patents (for a product called Tencel), bought out by Lenzing Fibers. Lenzing advertises the fabric it as Tencel – “a botanic fiber”… “that comes from nature.”  As I delved into the frightening tale that is Blanc’s book, I read about Lenzing and its sordid history during World War II in Austria.  The pants I have confidently bought from a local L.A. manufacturer are made of, you guessed it, Tencel, and apparently by Lenzing Fibers. That certainly spurred my interest in reading the whole story behind “Fake Silk”! As part of his worldwide research for the book, Dr. Blanc visited the Lenzing plant in Austria and reviewed the NIOSH archives on Axis, Alabama, among many other locales. Notable about the Austrian plant was its use in WWII for slave labor by the Nazis, where the plant made fabric for military and other uses. Like most of the industry, the plant’s process for creating rayon, or viscose, emitted the toxic chemical, carbon disulfide, the underlying topic of Blanc’s book. Exposure to this chemical causes severe neurologic problems, to the point that workers at manufacturing sites in the U.S. and around the world  actually committed suicide after overexposure to it. Others developed Parkinson’s or suffered strokes. In an interview last week with Canadian Broadcasting Corporation (CBC), Blanc said: Author Paul Blanc, who holds an endowed chair at UC San Francisco School of Medicine, is an occupational health physician. But this book illustrates how he is so much more… an historian… a humanist…  a corporate investigator… and someone who understands both politics and economics. His book reflects a wide range of intellectual interests. Fake Silk tells the story of “the lethal history of viscose rayon” during WWI and WWII, how the industry moved to developing countries, and efforts of corporations to “greenwash” viscose. But back to Tencel for a moment. It is hard to fathom that the fabric in my clothing is made by a company that once used slave labor under the Nazis. But actually, it turns out that Tencel is an innovation that does not require carbon disulfide, although it is unclear how toxic the alternative solvent used (something called “NMMO”) might be; NMMO is usually referred to as “benign.” Tencel is a small part of the overall viscose market, which also includes carbon disulfide-using cellophane and rayon sponges which are common in kitchens. For those of us whose careers started out in the 1970s with occupational health, and for those of us who have since been involved more in environmental health (rather than worker safety) issues, this book shows the close connection between the two fields. Workers got sick inside the plants from carbon disulfide exposure; nearby residents got sick from what the plants emitted. As I bet many Pump Handle readers do, I think of myself as someone who knows quite a bit about the history of worker health. But I had no idea about the grim history that Paul Blanc so compellingly describes, with meticulous footnotes. I hope you will enjoy reading Paul Blanc’s history of this industry as much as I did – even though being horrified by the tale that he unravels. Andrea Hricko is a professor of preventive medicine at the University of Southern California.


Siroky J.,University of Leeds | Siroky J.,Christian Doppler Laboratory | Blackburn R.S.,University of Leeds | Bechtold T.,Christian Doppler Laboratory | And 2 more authors.
Carbohydrate Polymers | Year: 2011

To understand the effect of alkali treatment on sorption behaviour of cellulose II fibres, samples were continuously pre-treated using NaOH over a concentration range of 0.0-7.15 mol dm-3, with varying tension; treated substrates were dyed with hydrolysed C. I. Reactive Red 120. Greatest adsorption of dye occurs for cellulose II fibres treated with 2.53 and 3.33 mol dm-3 aqueous NaOH solution. Correlation to sorption isotherms is most closely associated with a Langmuir type isotherm, but correlation to the Freundlich isotherm is still significant, indicating sorption via a combination of Langmuir and Freundlich isotherms. Adsorption energy (ΔG0) increases with increasing NaOH concentration to a maxima between 2.53 and 3.33 mol dm-3 NaOH and then decreases with further increase in NaOH concentration. Equilibrium dye sorption shows good correlation with water sorption as assessed by the reactive structural fraction (RSF) theory. Theoretical monolayer capacity (q0) increases with increasing NaOH concentration to a maxima at 3.33 mol dm-3 NaOH and then decreases with further increase in NaOH concentration; q0 is significantly in excess of the number of available specific sites (-COO-Na +) in the substrate, indicating non-site-specific interactions, more typical of a Freundlich isotherm. Pores in the fibre significantly affected by alkali treatment (<20 diameter) and accessibility of dye (14 ) sorption into those pores account the differences observed herein; maximum qe, q0 and ΔG0 are observed for cellulose II fibre treated with 2.53-3.33 mol dm-3 NaOH as this concentration range affects the greatest increase in accessible pore volume in the fibres. © 2010 Elsevier Ltd. All rights reserved.


Goswami P.,University of Leeds | Blackburn R.S.,University of Leeds | Taylor J.,Lenzing Fibers | White P.,Lenzing Fibers
Cellulose | Year: 2011

Cellulose is a linear 1,4-β-glucan polymer where the units are able to form highly ordered structures, as a result of extensive interaction through intra- and intermolecular hydrogen bonding of the three hydroxyl groups in each cellulose unit. Alkali has a substantial influence on morphological, molecular and supramolecular properties of cellulose II polymer fibres causing changes in crystallinity. Lyocell fibres pre-treated with 0.0, 2.0, and 4.0 mol dm-3 aqueous NaOH solution were dyed with hydrolyzed reactive dyes that had different molecular shapes and sizes. Overall exhaustion (qe), value of K, and -ΔG increased for lyocell samples pre-treated with aqueous NaOH solution in the following order: 2.0 > 4.0 > 0.0 mol dm-3 NaOH. The same trends were observed for colour strength (K/S) values of the dyeings. Pre-treatment of lyocell with 2.0 mol dm-3 NaOH creates the substrate that achieves the most thermodynamically favourable system for sorption of hydrolyzed reactive dyes, as at this concentration crystallinity decreases (with respect to 0.0 mol dm-3 NaOH treated lyocell) to afford higher sorption; however, at higher alkali concentrations the macro-sorbent forms a compacted unit that limits diffusion within the sorbent interior. Molecular size of the sorbate dye has a significant effect on the sorption process: for the largest dye structure the sorption isotherm is most closely correlated to a Langmuir isotherm; as the size of the dye decreases correlation to a Langmuir isotherm is observed, but with good correlation to the Freundlich isotherm; as the size of the dye is decreased further sorption is more typical of a Freundlich isotherm. © 2011 Springer Science+Business Media B.V.


Siroky J.,University of Leeds | Siroky J.,Christian Doppler Laboratory | Blackburn R.S.,University of Leeds | Bechtold T.,Christian Doppler Laboratory | And 2 more authors.
Cellulose | Year: 2010

Cellulose is a linear 1,4-β-glucan polymer where the units are able to form highly ordered structures, as a result of extensive interaction through intra- and intermolecular hydrogen bonding of the three hydroxyl groups in each cellulose unit. Alkali has a substantial influence on morphological, molecular and supramolecular properties of cellulose II polymer fibres causing changes in crystallinity. These physical changes were observed herein using ATR-FTIR spectroscopy, following continuous treatment of the cellulose II fabrics with aqueous sodium hydroxide solution under varying condition parameters. Post-treatment, maxima for total crystallinity index and lateral order index, and minima for hydrogen bond intensity, were observed at concentrations of 3.3 and 4.5 mol dm-3 NaOH, when treated at 25 °C and 40 °C, respectively. Under these treatment conditions, it is proposed that maximum molecular reorganisation occurs in the amorphous and quasi-crystalline phases of the cellulose II polymer. © 2009 Springer Science+Business Media B.V.

Loading Lenzing Fibers collaborators
Loading Lenzing Fibers collaborators