San Francisco, CA, United States
San Francisco, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Lens Inc | Date: 2014-07-25

The present invention is a phakic intraocular lens for implantation between an iris and a crystalline lens. The phakic intraocular lens includes a diffraction grating 5 disposed in a lens central part 2 and having circular, coaxial grooves formed thereon, and a support part 3 disposed outside the diffraction grating 5 and supporting the diffraction grating 5. A hole 6 is formed in the center of the diffraction grating 5.


Patent
Lens Inc | Date: 2017-05-31

The present invention is a phakic intraocular lens for implantation between an iris and a crystalline lens. The phakic intraocular lens includes a diffraction grating 5 disposed in a lens central part 2 and having circular, coaxial grooves formed thereon, and a support part 3 disposed outside the diffraction grating 5 and supporting the diffraction grating 5. A hole 6 is formed in the center of the diffraction grating 5.


An accommodating (re-focusable) lens system a body of which includes, upon being assembled, first and second individual lenslets having first and second optical portions sequentially disposed along an optical axis. Change in optical-power accommodation of the system is achieved by changing an applanated area of contact between the lenslets in response to force applied to the lenslets and transformed into an axial force. In specific case, the first and second lenslets form an intraocular lens (IOL) and have respective haptic portions, interlocked as a result of rotating of one lenslet with respect to another such as to bring first and second lenslets in contact at an axial point. The applanated area of contact is changed, then, in response to a radially-directed force caused by a change of distance between the interlocked ends of the haptics and transferred to the optical portions through the interlocked haptics.


Patent
Lens Inc | Date: 2017-01-04

Laser assisted cataract surgery methods and devices utilize one or more treatment laser beams to create a shaped opening in the anterior lens capsule of the eye when performing a capsulorrhexis procedure. A light absorbing agent may be applied to the anterior lens capsule to facilitate laser thermal separation of tissue along a treatment beam path on the lens capsule. Relative or absolute reflectance from the eye, and optionally from a surgical contact lens, may be measured to confirm and optionally quantify the presence of the light absorbing agent, before the treatment beam is applied.


Patent
Lens Inc | Date: 2017-01-17

A laser-assisted method for fully or partially separating tissue such as collagen containing tissue is provided. In one embodiment, the method pertains to a capsulorhexis whereby the laser-assisted method is applied to the lens capsule. A light-absorbing agent is added into or onto the tissue. A light beam with a wavelength capable of being absorbed by the light absorbing agent is then directed at the tissue to cause a thermal effect at the tissue following a predetermined closed curve with the goal to avoid irregularity or potential tears in the resulting rim of the tissue.


Patent
Lens Inc | Date: 2016-08-16

Laser assisted cataract surgery methods and devices utilize one or more treatment laser beams to create a shaped opening in the anterior lens capsule of the eye when performing a capsulorrhexis procedure. A light absorbing agent may be applied to the anterior lens capsule to facilitate laser thermal separation of tissue along a treatment beam path on the lens capsule. Relative or absolute reflectance from the eye, and optionally from a surgical contact lens, may be measured to confirm and optionally quantify the presence of the light absorbing agent, before the treatment beam is applied. Such measurements may be used to determine that sufficient light absorbing agent is present in the lens capsule so that transmission of the treatment beam through the capsule will be below a predetermined threshold deemed safe for the retina and other interior portions of the eye, and may also be used to determine that sufficient light absorbing agent is present to result in complete laser thermal separation of the anterior capsule along the treatment beam path. Visualization patterns produced with one or more target laser beams may be projected onto the lens capsule tissue to aid in the capsulorrhexis procedure. In addition or alternatively, virtual visualization patterns may presented on a display integrated with a laser assisted cataract surgery device to aid in the procedure. The visual axis of the eye may be determined, during surgery for example, with a laser beam on which the patient is fixated. The orientation of a toric IOL may be assessed during or after placement by observing the reflection from the back of the eye of a laser beam on which the patient is fixated. The devices disclosed herein may be attached to or integrated with microscopes.


An accommodating (re-focusable) lens system a body of which includes, upon being assembled, first and second individual lenslets having first and second optical portions sequentially disposed along an optical axis. Change in optical-power accommodation of the system is achieved by changing an applanated area of contact between the lenslets in response to force applied to the lenslets and transformed into an axial force. In specific case, the first and second lenslets form an intraocular lens (IOL) and have respective haptic portions, interlocked as a result of rotating of one lenslet with respect to another such as to bring first and second lenslets in contact at an axial point. The applanated area of contact is changed, then, in response to a radially-directed force caused by a change of distance between the interlocked ends of the haptics and transferred to the optical portions through the interlocked haptics. When installed in a natural lens capsule after the cataract extraction, the optical power of such IOL is gradually modifiable due to a change of curvature of the capsule caused by operation of a ciliary muscle.


Patent
Lens Inc | Date: 2015-04-29

An aspect of the present invention relates to an optical article, which comprises a plastic substrate, and a hard coat layer directly, or through another layer, on a surface of the plastic substrate, wherein the hard coat layer comprises a filler component comprising chain-like inorganic oxide microparticles, and in the hard coat layer, a content of the chain-like inorganic oxide microparticles is equal to or greater than 15 mass percent and a content of the filler component ranges from greater than 20 mass percent to less than 40 mass percent, and a layer thickness of the hard coat layer is equal to or greater than 8 m but equal to or less than 15 m.


Patent
Lens Inc | Date: 2016-09-21

Laser assisted cataract surgery methods and devices utilize one or more treatment laser beams to create a shaped opening in the anterior lens capsule of the eye when performing a capsulorrhexis procedure. A light absorbing agent may be applied to the anterior lens capsule to facilitate laser thermal separation of tissue along a treatment beam path on the lens capsule. Relative or absolute reflectance from the eye, and optionally from a surgical contact lens, may be measured to confirm and optionally quantify the presence of the light absorbing agent, before the treatment beam is applied. Such measurements may be used to determine that sufficient light absorbing agent is present in the lens capsule so that transmission of the treatment beam through the capsule will be below a predetermined threshold deemed safe for the retina and other interior portions of the eye, and may also be used to determine that sufficient light absorbing agent is present to result in complete laser thermal separation of the anterior capsule along the treatment beam path. Visualization patterns produced with one or more target laser beams may be projected onto the lens capsule tissue to aid in the capsulorrhexis procedure. In addition or alternatively, virtual visualization patterns may presented on a display integrated with a laser assisted cataract surgery device to aid in the procedure. The visual axis of the eye may be determined, during surgery for example, with a laser beam on which the patient is fixated. The orientation of a toric IOL may be assessed during or after placement by observing the reflection from the back of the eye of a laser beam on which the patient is fixated. The devices disclosed herein may be attached to or integrated with microscopes.


Patent
Lens Inc | Date: 2016-05-25

A laser-assisted method for fully or partially separating tissue such as collagen containing tissue is provided. In one embodiment, the method pertains to a capsulorhexis whereby the laser-assisted method is applied to the lens capsule. A light-absorbing agent is added into or onto the tissue. A light beam with a wavelength capable of being absorbed by the light absorbing agent is then directed at the tissue to cause a thermal effect at the tissue following a predetermined closed curve with the goal to avoid irregularity or potential tears in the resulting rim of the tissue.

Loading Lens Inc collaborators
Loading Lens Inc collaborators