Time filter

Source Type

Kiel, Germany

The Leibniz Institute of Marine science is a research institute in Kiel, Germany. It was formed in 2004 by merging the Institute for Marine Science with the Research Center for Marine Geoscience and is co-funded by both federal and provincial governments. It is a member of the Leibniz Association and coordinator of the FishBase Consortium. The institute operates world-wide in all ocean basins, specialising in climate dynamics, marine ecology and biogeochemistry, and ocean floor dynamics and circulation. IFM-GEOMAR offers degree courses in affiliation with the University of Kiel, and operates the Kiel Aquarium and the Lithothek, a repository for split sediment core samples. Wikipedia.

Bauch H.A.,Leibniz Institute of Marine Science
Quaternary Science Reviews | Year: 2013

Arctic palaeorecords are important to understand the "natural range" of forcing and feedback mechanisms within the context of past and present climate change in this temperature-sensitive region. A wide array of methods and archives now provide a robust understanding of the Holocene climate evolution. By comparison rather little is still known about older interglacials, and in particular, on the effects of the northward propagation of heat transfer via the Atlantic meridional ocean circulation (AMOC) into the Arctic. Terrestrial records from this area often indicate a warmer and moister climate during past interglacials than in the Holocene implying a more vigorous AMOC activity. This is in conflict with marine data. Although recognized as very prominent interglacials in Antarctic ice cores, cross-latitudinal surface ocean temperature reconstructions show that little of the surface ocean warmth still identified in the Northeast Atlantic during older interglacial peaks (e.g., MIS5e, 9, 11) was further conveyed into the polar latitudes, and that each interglacial developed its own specific palaeoclimate features. Interactive processes between water mass overturning and the hydrological system of the Arctic, and how both developed together out of a glacial period with its particular ice sheet configuration and relative sea-level history, determined the efficiency of an evolving interglacial AMOC. Because of that glacial terminations developed some very specific water mass characteristics, which also affected the climate evolution of the ensuing interglacial periods. Moreover, the observed contrasts in the Arctic-directed meridional ocean heat flux between past interglacials have implications for the palaeoclimatic evaluation of this polar region. Crucial environmental factors of the Arctic climate system, such as the highly dynamical interactions between deep water mass flow, surface ocean temperature/salinity, sea ice, and atmosphere, exert strong feedbacks on interglacial climate regionality that goes well beyond the Arctic. A sound interpretation of such processes from palaeoarchives requires a good understanding of the applied proxies. Fossils, in particular, are often key to the reconstruction of past conditions. But the tremendously flexible adaptation strategies of biota sometimes hampers further in-depth interpretations, especially when considering their palaeoenvironmental meaning in the context of rapid palaeoclimatic changes and long-term Pleistocene evolution. © 2012 Elsevier Ltd. Source

Reusch T.B.H.,Leibniz Institute of Marine Science
Evolutionary Applications | Year: 2014

I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe-host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. © 2013 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. Source

Sabine C.L.,National Oceanic and Atmospheric Administration | Tanhua T.,Leibniz Institute of Marine Science
Annual Review of Marine Science | Year: 2010

A significant impetus for recent ocean biogeochemical research has been to better understand the ocean's role as a sink for anthropogenic CO 2. In the 1990s the global carbon survey of the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) inspired the development of several approaches for estimating anthropogenic carbon inventories in the ocean interior. Most approaches agree that the total global ocean inventory of C ant was around 120 Pg C in the mid-1990s. Today, the ocean carbon uptake rate estimates suggest that the ocean is not keeping pace with the CO 2 emissions growth rate. Repeat occupations of the WOCE/JGOFS survey lines consistently show increases in carbon inventories over the last decade, but have not yet been synthesized enough to verify a slowdown in the carbon storage rate. There are many uncertainties in the future ocean carbon storage. Continued observations are necessary to monitor changes and understand mechanisms controlling ocean carbon uptake and storage in the future. © 2010 by Annual Reviews. Source

Convergent plate boundaries around the globe show a high degree of structural complexity and variability in site-specific geometry and mass flux. The heterogeneity in the structural evolution, the interior regime as well as external architecture of individual margins is reflected in their seismic character, resulting in a segmentation along-strike as well as along-dip. Subduction zones generate more than 80% of global earthquakes above magnitude 8.0, but rupture characteristics are highly individual and linked to margin specific geometrical conditions. Major segments of subduction zones are commonly submerged in deep water and difficult to access at the majority of margins. Marine geophysical techniques, which are able to image the complex structures in these settings with sufficient coherency and depth penetration, have proven crucial to improve our knowledge on the geological framework of the different types of subduction zones. The aim of this review paper is to unravel the structural diversity of convergent margins and between individual subduction zone segments. Field data from different margins around the globe deliver images of the seafloor and subsurface in unprecedented resolution, which show segmentation to be far more complex than previously inferred. Along-strike segmentation results in accretionary segments contiguous to erosive segments along a single margin. Modes of mass transfer must hence be viewed as transient processes dependent on sediment supply and lower plate structure. Along-strike segment boundaries commonly correlate with underthrusting lower plate relief that controls the deep deformation of a subduction zone and the spatial and temporal variations in slip behavior. Examples of underthrusting oceanic basement relief at different stages of subduction elucidate their impact on the inner geometry of the margin. Lower plate heterogeneities occur at subduction zones worldwide and thus pose a common phenomenon, whose role as barriers to seismic rupture constitute a central control on subduction zone seismicity and segmentation. © 2012 Elsevier B.V. Source

Maraun D.,Leibniz Institute of Marine Science
Geophysical Research Letters | Year: 2012

Bias correcting climate models implicitly assumes stationarity of the correction function. This assumption is assessed for regional climate models in a pseudo reality for seasonal mean temperature and precipitation sums. An ensemble of regional climate models for Europe is used, all driven with the same transient boundary conditions. Although this model-dependent approach does not assess all possible bias non-stationarities, conclusions can be drawn for the real world. Generally, biases are relatively stable, and bias correction on average improves climate scenarios. For winter temperature, bias changes occur in the Alps and ice covered oceans caused by a biased forcing sensitivity of surface albedo; for summer temperature, bias changes occur due to a biased sensitivity of cloud cover and soil moisture. Precipitation correction is generally successful, but affected by internal variability in arid climates. As model sensitivities vary considerably in some regions, multi model ensembles are needed even after bias correction. Copyright 2012 by the American Geophysical Union. Source

Discover hidden collaborations