Time filter

Source Type

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.3.2 | Award Amount: 4.23M | Year: 2013

The SITOGA project will address for the first time the integration of transition metal oxides (TMO) materials in silicon photonics and CMOS electronics. TMOs have unique electro-optical properties that will offer unprecedented and novel capabilities to the silicon platform. SITOGA will focus on two disruptive TMO materials, barium titanate (BaTiO3) and vanadium oxide (VO2), for developing advanced photonic integrated devices for a wide range of applications. First, breakthrough photonic devices will be fabricated using the TMOs. Due to its ultra-high linear electro-optical coefficient, BaTiO3 will be used to develop an electro-optical modulator with bandwidth above 40GHz and drive voltage below 2V. The electrically-triggered, ultra-large change in VO2 refractive index will be exploited to build an electro-optical switching component with power consumption below 10W and footprint below 50 m2.The integration of the TMOs and their photonic devices on silicon will be performed with CMOS compatible techniques. Innovative integration processes with silicon photonics circuits and CMOS electronics will be targeted. The whole technology chain will be validated by two functional demonstrators: a 40Gbit/s DPSK transceiver and an 8x8 switching matrix with 100Gbit/s throughput. Furthermore, to fully exploit the unique potential of SITOGA approach, we will also investigate novel electro-optical effects in integrated TMO devices (i.e. bistability) in a more exploratory part.SITOGA situates at the forefront of technological innovation, offering as well the capacity through its consortium members to translate innovation into commercial products. To ensure high commercial impact, a clear path towards exploitation of the developed TMO/Si technology has been defined and will be pursued in the project.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-27-2015 | Award Amount: 3.42M | Year: 2016

DIMENSION establishes a truly integrated electro-optical platform, extending the silicon (Bi)CMOS and silicon photonics platform with III-V photonic functionality. The III-V integration concept is fully CMOS compatible and offers fundamental advantages compared to state-of-the art integration approaches. After bonding and growing ultra-thin III-V structures onto the silicon front-end-of-line, the active optical functions are embedded into the back-end of line stack. This offers great opportunities for new innovative devices and functions at the chip-level but also for the assembly of such silicon devices. As processing takes place on silicon wafers, this project has the unique opportunity to bring the cost of integrated devices, with CMOS, photonic and III-V functionality, down to the cost of silicon volume manufacturing. Such a platform has the potential to allow Europe to take a leading position in the field of high functionality integrated photonics. Moreover, the project demonstrators adhere to standards such as IEEE802.3, 25G optical components and low-power electronics, thus opening a viable route towards ultra-low-cost high-performance optical transceivers for a new era of data centres and cloud systems. DIMENSION will realise three demonstrators: A short-reach transmitter for intra-datacenter operation addressing the 400 GbE-LR8 (IEEE 802.3bs) standard making use of an array of directly modulated lasers, pulse-amplitude-modulation (PAM4) techniques and 8 wavelength channels in the telecom O-band. A medium-reach transmitter for inter-datacenter applications beyond the 400 GbE-LR8 (IEEE 802.3bs) standard by providing a tuneable coherent transmitter for inter-datacenter and metro applications for link lengths in excess of 10km using a modulator integrated on the same chip. A novel laser directly grown on silicon photonics, operated at 25Gb/s in the telecom O-band demonstrating the significant cost-saving potential of the technologies pursued in DIMENSION.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-26-2014 | Award Amount: 4.58M | Year: 2015

myAirCoach aims to develop a holistic mHealth personalised asthma monitoring system empowering patients to manage their own health by providing user friendly tools to increase the awareness of their clinical state and effectiveness of medical treatment. This will be achieved through a multi-disciplinary approach aiming at the development of an ergonomic, compact and efficient sensor-based inhaler that will be in continuous communication with a mobile device. This sensing infrastructure will have the capability of automated monitoring of several clinical, behavioural and environmental factors in realistic conditions. A pipeline of advanced analysis, processing and computational modelling techniques, dealing with raw measurements, extracted features, indicators, and personal profile data representation will ensure clinical state awareness and a timely optimal treatment. Besides, a personal mHealth guidance system will empower patients to customize their treatment towards personalised preset goals and guidelines, either automatically or driven by healthcare professional in a telemedicine manner. In this context, myAirCoach will give to clinicians early indications of increasing symptoms or exacerbations, while making an important contribution in successfully self-management of asthma. The myAirCoach framework will be quantified and evaluated in two test campaigns with carefully designed cohorts of patients in three testing sites. Besides the obvious necessity of the test campaigns to ground the myAirCoach patient models and framework with data, the objective formal validation of the results is expected to lead to increased confidence in the myAirCoach approach and in ICT decision support and self-management systems in general. The impact of such a holistic and innovative approach is huge and the foundations laid here are expected to result in a widespread adoption of sensor-based self-management systems not only in asthma, but also in other respiratory diseases.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: COMPET-06-2014 | Award Amount: 1.04M | Year: 2015

The project aims to realize a strong methodology for the development and design of a radiation hard non-volatile memory technology by using standard CMOS silicon processing. Since standard silicon memories, such as flash memories tend to fail under irradiation, a new approach is envisaged: the development of a specific memory technology, so called resistive random-access memory (RRAM), which is able to sustain heavy ions and other charged particles. The switching effect of RRAM devices is caused by chemical Redox-reactions, therefore, radiation effects like total ionizing dose and single event effects dont affect the switching mechanism. Semiconductor memories, among rad hard integrated circuit scenario, are one of the most critical topics for space applications. Actually both volatile and nonvolatile memories, excluding few exceptions, are integrated using standard processes and standard architectures. This means that the final device is typically at least Rad tolerant and not Rad Hard and failure during mission is avoided using Error Correcting Code techniques including redundancy at the board level. The basic goal of the project is to give a methodology for the development of a new rad-hard nonvolatile RRAM memory with high-performance features like good retention, re-programmability and cycling, and realize a prototype (1Mbit RRAM memory) in order to validate the approach.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2013.WATER INNO&DEMO-1 | Award Amount: 3.24M | Year: 2014

The need for providing high quality water to citizens and to reduce damages produce by floods and droughts has motivated research and development of many software-based decision support systems (DSSs). However, despite the notable technical advances DSSs, most of the water infrastructures in Europe are still managed by expert operators based on traditional best practices but with little support from these new smart tools. The objective of SAID project is to involve the final users and the SMEs in order improve the production and deployment of more smart water management systems in Europe. The project will focus in the deployment and evaluation of a complex demonstrator, composed by several heterogeneous and innovative DSSs in the same river basin. This demonstrator, in the south of Spain, represents many similar basins in Europe, and will be based on cutting-edge DSS technologies in four areas: flood control (including the optimization of dam management), quality of water, energy production and energy consumption. The feedback from the final users will drive the improvement of the DSSs and the development and validation of a software platform that facilitate the integration of existing and future DSSs. SAID project will be carry out by water management authorities, companies operating water infrastructures, SMEs that produce DSS and research centers with proved knowledge in techniques and technologies for real-time data monitoring, environmental modeling, simulation and optimization of the water related elements. SAID will contribute to the initial action 1 (Smart water management systems) identified in the priority 4.7 Decision support systems and monitoring in the Strategic Implementation Plan of the EIP on Water.

Discover hidden collaborations