Entity

Time filter

Source Type


Jentsch T.J.,Leibniz Institute for Molecular Pharmacology
Nature Reviews Molecular Cell Biology | Year: 2016

Cells need to regulate their volume to counteract osmotic swelling or shrinkage, as well as during cell division, growth, migration and cell death. Mammalian cells adjust their volume by transporting potassium, sodium, chloride and small organic osmolytes using plasma membrane channels and transporters. This generates osmotic gradients, which drive water in and out of cells. Key players in this process are volume-regulated anion channels (VRACs), the composition of which has recently been identified and shown to encompass LRRC8 heteromers. VRACs also transport metabolites and drugs and function in extracellular signal transduction, apoptosis and anticancer drug resistance. © 2016 Macmillan Publishers Limited. All rights reserved.


Ito Y.,Tokyo Metroplitan University | Selenko P.,Leibniz Institute for Molecular Pharmacology
Current Opinion in Structural Biology | Year: 2010

While we appreciate the complexity of the intracellular environment as a general property of every living organism, we collectively lack the appropriate tools to analyze protein structures in a cellular context. In-cell NMR spectroscopy represents a novel biophysical tool to investigate the conformational and functional characteristics of biomolecules at the atomic level inside live cells. Here, we review recent in-cell NMR developments and provide an outlook towards future applications in prokaryotic and eukaryotic cells. We hope to thereby emphasize the usefulness of in-cell NMR techniques for cellular studies of complex biological processes and for structural analyses in native environments. © 2010 Elsevier Ltd.


Jentsch T.J.,Leibniz Institute for Molecular Pharmacology
Journal of Physiology | Year: 2015

After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl- channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl- channels and vesicular Cl-/H+-exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel. © 2015 The Physiological Society.


Daumke O.,Max Delbruck Centrum fur Molekulare Medizin | Daumke O.,Free University of Berlin | Roux A.,University of Geneva | Haucke V.,Leibniz Institute for Molecular Pharmacology | Haucke V.,Charite - Medical University of Berlin
Cell | Year: 2014

Biological membranes undergo constant remodeling by membrane fission and fusion to change their shape and to exchange material between subcellular compartments. During clathrin-mediated endocytosis, the dynamic assembly and disassembly of protein scaffolds comprising members of the bin-amphiphysin-rvs (BAR) domain protein superfamily constrain the membrane into distinct shapes as the pathway progresses toward fission by the GTPase dynamin. In this Review, we discuss how BAR domain protein assembly and disassembly are controlled in space and time and which structural and biochemical features allow the tight regulation of their shape and function to enable dynamin-mediated membrane fission. © 2014 Elsevier Inc.


Wieffer M.,Leibniz Institute for Molecular Pharmacology
Current biology : CB | Year: 2013

Endosomal membrane traffic serves crucial roles in cell physiology, signaling, and development. Sorting between endosomes and the trans-Golgi network (TGN) is regulated among other factors by the adaptor AP-1, an essential component of multicellular organisms. Membrane recruitment of AP-1 requires phosphatidylinositol 4-phosphate [PI(4)P], though the precise mechanisms and PI4 kinase isozyme (or isozymes) involved in generation of this PI(4)P pool remain unclear. The Wnt pathway is a major developmental signaling cascade and depends on endosomal sorting in Wnt-sending cells. Whether TGN/endosomal sorting modulates signaling downstream of Frizzled (Fz) receptors in Wnt-receiving cells is unknown. Here, we identify PI4-kinase type 2β (PI4K2β) as a regulator of TGN/endosomal sorting and Wnt signaling. PI4K2β and AP-1 interact directly and are required for efficient sorting between endosomes and the TGN. Zebrafish embryos depleted of PI4K2β or AP-1 lack pectoral fins due to defective Wnt signaling. Rescue experiments demonstrate requirements for PI4K2β-AP-1 complex formation and PI4K2β-mediated PI(4)P synthesis. Furthermore, PI4K2β binds to the Fz-associated component Dishevelled (Dvl) and regulates endosomal recycling of Fz receptors and Wnt target gene expression. These data reveal an evolutionarily conserved role for PI4K2β and AP-1 in coupling phosphoinositide metabolism to AP-1-mediated sorting and Wnt signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

Discover hidden collaborations