Time filter

Source Type

Gaidzik N.,Johannes Gutenberg University Mainz | Westerlind U.,Leibniz Institute for Analytical Sciences | Kunz H.,Johannes Gutenberg University Mainz
Chemical Society Reviews

Based on important cell-biological and biochemical results concerning the structural difference between membrane glycoproteins of normal epithelial cells and epithelial tumour cells, tumour-associated glycopeptide antigens have been chemically synthesised and structurally confirmed. Glycopeptide structures of the tandem repeat sequence of mucin MUC1 of epithelial tumour cells constitute the most promising tumour-associated antigens. In order to generate a sufficient immunogenicity of these endogenous structures, usually tolerated by the immune system, these synthetic glycopeptide antigens were conjugated to immune stimulating components: in fully synthetic two-component vaccines either with T-cell peptide epitopes or with Toll-like receptor2 lipopeptide ligands or in three-component vaccines with both these stimulants. Alternatively, the synthetic glycopeptide antigens were coupled to immune stimulating carrier proteins. In particular, MUC1 glycopeptide conjugates with Tetanus toxoid proved to be efficient vaccines inducing very strong immune responses in mice. The antibodies elicited with the fully synthetic vaccines showed selective recognition of the tumour-associated glycopeptides as was shown by neutralisation and micro-array binding experiments. After booster immunisations, most of the immune responses showed the installation of an immunological memory. Immunisation with fully synthetic three-component vaccines induced immune reactions with therapeutic effects in terms of reduction of the tumour burden in mice or in killing of tumour cells in culture, while MUC1 glycopeptide-Tetanus toxoid vaccines elicited antibodies in mice which recognised tumour cells in human tumour tissues. The results achieved so far are considered to be promising for the development of an active immunisation against tumours. © 2013 The Royal Society of Chemistry. Source

Blixt O.,Copenhagen University | Westerlind U.,Leibniz Institute for Analytical Sciences
Current Opinion in Chemical Biology

Glycosylation is chemically the most complex post-translational modification of proteins and therefore understanding the structural and biological implications of post-translational glycosylation is a major challenge. The need for rapid and reliable investigations of protein-glycan interaction events and the substantial efforts required to synthesize glycans and glycopeptides with a variety of structures has called for the development of miniaturized analytical techniques. In the last decade, glycan and glycopeptide microarrays have enabled high-throughput analysis of diverse protein-glycan interactions. Evaluations of enzyme activities and substrate specificities, characterization of glycan binding proteins, mapping of antibody epitopes, detection of autoantibodies and serodiagnosis are typically conducted on microarrays. The most significant developments in synthesis, immobilization and applications of glycopeptide microarrays are covered in this review. © 2014 Elsevier Ltd. Source

Gurevich E.L.,Leibniz Institute for Analytical Sciences
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

In this paper experimental observations of self-organized patterns in resolidified thin films of liquid superheated metals are reported. The superheated melt layers represent an example of a system driven far from equilibrium, which undergoes explosive boiling and solidifies afterward. The melts appear in the course of single-shot femtosecond laser heating of metal samples. Self-organized cells, solitonlike structures, periodic stripes, and transient patterns are observed. Pattern properties and mechanisms leading to the pattern formation as well as possible applications for nanotechnology are discussed. © 2011 American Physical Society. Source

Westerlind U.,Leibniz Institute for Analytical Sciences
Beilstein Journal of Organic Chemistry

Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL), expressed protein ligation (EPL), and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events. © 2012 Westerlind; licensee Beilstein-Institut. Source

Leibniz Institute for Analytical Sciences | Date: 2010-01-25

An Echelle spectrometer arrangement (

Discover hidden collaborations