Legacy Research

Portland, United States

Legacy Research

Portland, United States

Time filter

Source Type

Palchykova S.,University of Zürich | Winsky-Sommerer R.,University of Zürich | Winsky-Sommerer R.,University of Surrey | Shen H.-Y.,Legacy Research | And 4 more authors.
Journal of Neuroscience | Year: 2010

Sleep and sleep intensity are enhanced by adenosine and its receptor agonists, whereas adenosine receptor antagonists induce wakefulness. Adenosine kinase (ADK) is the primary enzyme metabolizing adenosine in adult brain. To investigate whether adenosine metabolism or clearance affects sleep, we recorded sleep in mice with engineered mutations in Adk. Adk-tg mice overexpress a transgene encoding the cytoplasmic isoform of ADK in the brain but lack the nuclear isoform of the enzyme. Wild-type mice and Adk+/- mice that have a 50% reduction of the cytoplasmic and the nuclear isoforms of ADK served as controls. Adk-tg mice showed a remarkable reduction of EEG power in low frequencies in all vigilance states and in theta activity (6.25-11 Hz) in rapid eye movement (REM) sleep and waking. Adk-tg mice were awake 58 min more per day than wild-type mice and spent significantly less time in REM sleep (102±3 vs 128±3 min in wild type). After sleep deprivation, slow-wave activity (0.75-4 Hz), the intensity component of non-rapid eye movement sleep, increased significantly less in Adk-tg mice and their slow-wave energy was reduced. In contrast, the vigilance states and EEG spectra of Adk+/- and wild-type mice did not differ. Our data suggest that overexpression of the cytoplasmic isoform of ADK is sufficient to alter sleep physiology. ADK might orchestrate neurotransmitter pathways involved in the generation of EEG oscillations and regulation of sleep. Copyright © 2010 the authors.


Boison D.,Legacy Research | Chen J.-F.,Boston University | Fredholm B.B.,Karolinska Institutet
Cell Death and Differentiation | Year: 2010

Despite major advances in a variety of neuroscientific research fields, the majority of neurodegenerative and neurological diseases are poorly controlled by currently available drugs, which are largely based on a neurocentric drug design. Research from the past 5 years has established a central role of glia to determine how neurons function and, consequently, glial dysfunction is implicated in almost every neurodegenerative and neurological disease. Glial cells are key regulators of the brain's endogenous neuroprotectant and anticonvulsant adenosine. This review will summarize how glial cells contribute to adenosine homeostasis and how glial adenosine receptors affect glial function. We will then move on to discuss how glial cells interact with neurons and the vasculature, and outline new methods to study glial function. We will discuss how glial control of adenosine function affects neuronal cell death, and its implications for epilepsy, traumatic brain injury, ischemia, and Parkinson's disease. Eventually, glial adenosine-modulating drug targets might be an attractive alternative for the treatment of neurodegenerative diseases. There are, however, several major open questions that remain to be tackled. © 2010 Macmillan Publishers Limited All rights reserved.


Chai S.,Legacy Research | Li M.,Legacy Research | Branigan D.,Legacy Research | Xiong Z.-G.,Legacy Research | Simon R.P.,Legacy Research
Journal of Biological Chemistry | Year: 2010

Acid-sensing ion channels (ASICs) are voltage-independent Na+ channels activated by extracellular protons. ASIC1a is expressed in neurons in mammalian brain and is implicated in long term potentiation of synaptic transmission that contributes to learning and memory. In ischemic brain injury, however, activation of this Ca2+-permeable channel plays a critical role in acidosis-mediated, glutamate-independent, Ca2+ toxicity. We report here the identification of insulin as a regulator of ASIC1a surface expression. In modeled ischemia using Chinese hamster ovary cells, serum depletion caused a significant increase in ASIC1a surface expression that resulted in the potentiation of ASIC1a activity. Among the components of serum, insulin was identified as the key factor that maintains a low level of ASIC1a on the plasma membrane. Neurons subjected to insulin depletion increased surface expression of ASIC1a with resultant potentiation of ASIC1a currents. Intracellularly, ASIC1a is predominantly localized to the endoplasmic reticulum in Chinese hamster ovary cells, and this intracellular localization is also observed in neurons. Under conditions of serum or insulin depletion, the intracellular ASIC1a is translocated to the cell surface, increasing the surface expression level. These results reveal an important trafficking mechanism of ASIC1a that is relevant to both the normal physiology and the pathological activity of this channel. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.


Boison D.,Legacy Research
Epilepsia | Year: 2010

Since its discovery a decade ago, RNA interference (RNAi) has been developed not only into powerful experimental tools but also into promising novel therapeutics. In contrast to conventional antiepileptic drugs (AEDs) that target specific proteins such as ion channels or receptors, RNAi-based therapeutics exploit an endogenous regulatory mechanism of gene expression and thereby are poised to prevent or reverse pathogenetic mechanisms involved in seizure development. Therapeutic RNAi has been widely explored for dominant targets involved in neurodegenerative diseases; however, their use for epilepsy therapy has received less attention. This review discusses potential RNAi-based targets that are of interest for epilepsy therapy, including adenosine kinase (ADK), the key negative regulator of the brain's endogenous anticonvulsant adenosine. Overexpression of ADK, and the resulting adenosine deficiency, are pathologic hallmarks of the sclerotic epileptic brain, and have been implicated in seizure generation. Therefore, RNAi-strategies aimed at reducing ADK (and increasing adenosine) are based on a direct neurochemical rationale that has recently been explored experimentally using ex vivo and in vivo gene therapy approaches. Technical issues and challenges remain before those promising tools can be developed into future therapeutics for epilepsy. © 2010 International League Against Epilepsy.


Pritchard E.M.,Tufts University | Valentin T.,Tufts University | Boison D.,Legacy Research | Kaplan D.L.,Tufts University
Biomaterials | Year: 2011

Controlling the rate of silk degradation is critical to its potential use in biomedical applications, including drug delivery and tissue engineering. The effect of protease concentration on accelerating degradation, and the use of ethylenediamine tetraacetic acid (EDTA) on reducing rates of degradation and on drug release from silk-based drug carriers was studied. Increased rates of proteolysis resulted in increased dye release from silk carriers, while EDTA release from the silk carriers inhibited proteolysis. The sustained release of EDTA from silk carriers in combination with the release of the small molecule anti-convulsant adenosine was investigated in vitro. This combination of factors resulted in delayed release of adenosine by inhibiting proteolytic activity. These results introduce a promising strategy to control drug delivery through the regulation of silk degradation rate, achieved via manipulation of local proteolytic activity. This ability to modulate enzyme function could be applicable to a range of silk biomaterial formats as well as other biodegradable polymers where enzymatic functions control biomaterial degradation and drug release rates. © 2010 Elsevier Ltd.


Boison D.,Legacy Research
Epilepsia | Year: 2010

Deficiency of the brain's endogenous anticonvulsant adenosine is a pathologic hallmark of epilepsy. Consequently, focal adenosine augmentation therapies (AATs) constitute a rational approach for seizure suppression. Focal adenosine augmentation and resulting seizure suppression can be realized by implanting adenosine-releasing stem cells or polymers into epileptogenic brain regions. For an expanded treatment of this topic see Jasper's basic mechanisms of the epilepsies. 4th ed. (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at). © 2010 International League Against Epilepsy.


Saugstad J.A.,Legacy Research
Journal of Cerebral Blood Flow and Metabolism | Year: 2010

MicroRNAs are small RNAs that function as regulators of posttranscriptional gene expression. MicroRNAs are encoded by genes, and processed to form ribonucleoprotein complexes that bind to messenger RNA (mRNA) targets to repress translation or degrade mRNA transcripts. The microRNAs are particularly abundant in the brain where they serve as effectors of neuronal development and maintenance of the neuronal phenotype. They are also expressed in dendrites where they regulate spine structure and function as effectors in synaptic plasticity. MicroRNAs have been evaluated for their roles in brain ischemia, traumatic brain injury, and spinal cord injury, and in functional recovery after ischemia. They also serve as mediators in the brain's response to ischemic preconditioning that leads to endogenous neuroprotection. In addition, microRNAs are implicated in neurodegenerative disorders, including Alzheimer's, Huntington, Parkinson, and Prion disease. The discovery of microRNAs has expanded the potential for human diseases to arise from genetic mutations in microRNA genes or sequences within their target mRNAs. This review discusses microRNA discovery, biogenesis, mechanisms of gene regulation, their expression and function in the brain, and their roles in brain ischemia and injury, neuroprotection, and neurodegeneration. © 2010 ISCBFM All rights reserved.


Inoue K.,Legacy Research | Branigan D.,Legacy Research | Xiong Z.-G.,Legacy Research
Journal of Biological Chemistry | Year: 2010

Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca2+-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg 2+ homeostasis, diseases caused by abnormal magnesium absorption, and in Ca2+-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn2+ homeostasis and in Zn2+-mediated neuronal injury. Using a combination of fluorescent Zn2+ imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn2+-induced injury of cultured mouse cortical neurons. The Zn2+-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd3+ or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn2+-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn2+ accumulation and Zn2+-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn 2+-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn2+ toxicity plays an important role. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.


Shen H.-Y.,Legacy Research | Li T.,Legacy Research | Boison D.,Legacy Research
Epilepsia | Year: 2010

Sudden unexpected death in epilepsy (SUDEP) is a significant cause of mortality in people with epilepsy. Two postulated causes for SUDEP, cardiac and respiratory depression, can both be explained by overstimulation of adenosine receptors. We hypothesized that SUDEP is a consequence of a surge in adenosine as a result of prolonged seizures combined with deficient adenosine clearance; consequently, blockade of adenosine receptors should prevent SUDEP. Here we induced impaired adenosine clearance in adult mice by pharmacologic inhibition of the adenosine-removing enzymes, adenosine kinase and deaminase. Combination of impaired adenosine clearance with kainic acid-induced seizures triggered sudden death in all animals. Most importantly, the adenosine receptor antagonist caffeine, when given after seizure onset, increased survival from 23.75 ± 1.35 min to 54.86 ± 6.59 min (p < 0.01). Our data indicate that SUDEP is due to overactivation of adenosine receptors and that caffeine treatment after seizure onset might be beneficial. © 2009 International League Against Epilepsy.


Ren G.,University of Washington | Boison D.,Legacy Research
Methods in Molecular Biology | Year: 2010

Adenosine is an important modulator of metabolic activity with powerful tissue- and cell-protective functions. Adenosine kinase (ADK), the major adenosine-regulating enzyme, is critical to adapt its intra- and extra-cellular levels in response to environmental changes. Lentiviral RNAi-mediated down-regulation of ADK in human mesenchymal stem cells (hMSCs) has therefore been considered an effective tool for engineering therapeutically effective adenosine-releasing cell grafts that could constitute patient-identical autologous implants for clinical application. We constructed lentiviral vectors that coexpress miRNA directed against ADK and an emerald green fluorescent protein (EmGFP) reporter gene. Following lentiviral transduction of hMSCs, we demonstrated up to 80% down-regulation of ADK and 98% transduction efficiency. Transduced hMSCs continued to express EmGFP after 4-6 consecutive passages and EmGFP-positive hMSC grafts survived in the hippocampal fissure of mouse brains and provided efficient adenosine-dependent neuroprotection in a mouse model of seizure-induced cell loss. © 2010 Springer Science+Business Media, LLC.

Loading Legacy Research collaborators
Loading Legacy Research collaborators