Lee Gil Ya Cancer and Diabetes Institute

Yeonsu gu, South Korea

Lee Gil Ya Cancer and Diabetes Institute

Yeonsu gu, South Korea
Time filter
Source Type

Lee J.H.,Ajou University | Lee J.H.,GNT Pharma Co. | An C.S.,GNT Pharma Co. | Yun B.S.,GNT Pharma Co. | And 8 more authors.
European Journal of Pharmacology | Year: 2012

Oxidative stress and inflammation both play major roles in the development of the acute pancreatitis. Currently, a pancreatic enzyme inhibitor with limited efficacy is only clinically available in a few countries, and antioxidants or non-steroidal anti-inflammatory drugs (NSAIDs) provide only partial tissue protection in acute pancreatitis animal models. Here, we introduce a new drug candidate for treating acute pancreatitis named ND-07 [chemical name: 2-acetoxy-5-(2-4-(trifluoromethyl)-phenethylamino)-benzoic acid] that exhibits both potent antioxidative and anti-inflammatory activities. In an electron spin resonance (ESR) study, ND-07 almost blocked hydroxyl radical generation as low as 0.05 μM and significantly suppressed DNA oxidation and cell death in a lipopolysaccharide (LPS)-stimulated pancreatic cell line. In a cerulein plus LPS-induced acute pancreatitis model, ND-07 pretreatment showed significant tissue protective effects, with reductions of serum amylase and lipase levels and pancreatic wet weights. ND-07 not only diminished the plasma levels of malondialdehyde (MDA) and nitric oxide but also significantly decreased prostaglandin E 2 (PGE 2) and expression of tumor necrotizing factor-alpha (TNF-α) in the pancreatic tissue. In a severe acute necrotizing pancreatitis model induced by a choline deficient, ethionine-supplemented (CDE) diet, ND-07 dramatically protected the mortality even without any death, providing attenuation of pancreas, lung, and liver damages as well as the reductions in serum levels of lactate dehydrogenase (LDH), amylase and lipase, MDA levels in the plasma and pancreatic tissues, plasma levels of TNF-α, and interleukin-1 (IL-1β). These findings suggest that current dual synergistic action mechanisms of ND-07 might provide a superior protection for acute pancreatitis than conventional drug treatments. © 2012 Elsevier B.V. All rights reserved.

PubMed | Lee Gil Ya Cancer and Diabetes Institute, Yonsei University, Gachon University and Sogang University
Type: Journal Article | Journal: Sensors (Basel, Switzerland) | Year: 2016

Electrical cell-substrate impedance sensing is increasingly being used for label-free and real-time monitoring of changes in cell morphology and number during cell growth, drug screening, and differentiation. In this study, we evaluated the feasibility of using ECIS to monitor C2C12 myoblast differentiation using a fabricated indium tin oxide (ITO) electrode-based chip. C2C12 myoblast differentiation on the ITO electrode was validated based on decreases in the mRNA level of MyoD and increases in the mRNA levels of myogenin and myosin heavy chain (MHC). Additionally, MHC expression and morphological changes in myoblasts differentiated on the ITO electrode were comparable to those in cells in the control culture dish. From the monitoring the integration of the resistance change at 21.5 kHz, the cell differentiation was label-free and real-time detectable in 30 h of differentiation (

Lee K.M.,Gwangju Institute of Science and Technology | Yang S.-J.,Gwangju Institute of Science and Technology | Kim Y.D.,Chonnam National University | Choi Y.D.,Chonnam National University | And 5 more authors.
Diabetes | Year: 2013

A nonsense mutation in cereblon (CRBN ) causes a mild type of mental retardation in humans. An earlier study showed that CRBN negatively regulates the functional activity of AMP-activated protein kinase (AMPK) in vitro by binding directly to the a1-subunit of the AMPK complex. However, the in vivo role of CRBN was not studied. For elucidation of the physiological functions of Crbn, a mouse strain was generated in which the Crbn gene was deleted throughout the whole body. In Crbn-deficient mice fed a normal diet, AMPK in the liver showed hyperphosphorylation, which indicated the constitutive activation of AMPK. Since Crbn-deficient mice showed significantly less weight gain when fed a high-fat diet and their insulin sensitivity was considerably improved, the functions of Crbn in the liver were primarily investigated. These results provide the first in vivo evidence that Crbn is a negative modulator of AMPK, which suggests that Crbn may be a potential target for metabolic disorders of the liver. © 2013 by the American Diabetes Association.

Kim Y.J.,Lee Gil Ya Cancer and Diabetes Institute | Lee J.S.,Gachon University | Hong K.S.,Gachon University | Chung J.W.,Lee Gil Ya Cancer and Diabetes Institute | And 3 more authors.
Cancer Prevention Research | Year: 2010

Colitis-associated cancers arise in the setting of chronic inflammation wherein an "inflammation-dysplasia-carcinoma" sequence prevails. Based on our previous findings in which the proton pump inhibitor could impose significant levels of anti-inflammatory, antiangiogenic, and selective apoptosis induction beyond gastric acid suppression, we investigated whether omeprazole could prevent the development of colitis-associated cancer in a mouse model induced by repeated bouts of colitis. Omeprazole, 10 mg/kg, was given i.p. all through the experimental periods for colitis-associated carcinogenesis. Molecular changes regarding inflammation and carcinogenesis were compared between control groups and colitis-associated cancer groups treated with omeprazole in addition to chemopreventive outcome. Nine of 12 (75.0%) mice in the control group developed multiple colorectal tumors, whereas tumors were noted in only 3 of 12 (25.0%) mice treated with daily injections of omeprazole. The cancer-preventive results of omeprazole treatment was based on significant decreases in the levels of nitric oxide, thiobarbituric acid-reactive substance, and interleukin-6 accompanied with attenuated expressions of tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2. The expressions of matrix metalloproteinase (MMP)-9, MMP-11, and MT1-MMMP were significantly decreased in mice treated with omeprazole in accordance with significant decreases in the number of β-catenin-accumulated crypts. A significant induction of apoptosis was observed in tumor tissue treated with omeprazole. Omeprazole could block the trophic effect of gastrin in colon epithelial cells. The significant anti-inflammatory, antioxidative, and antimutagenic activities of omeprazole played a cancer-preventive role against colitisinduced carcinogenesis, and our novel in vivo evidence is suggestive of chemopreventive action independent of gastric acid suppression. ©2010 AACR.

Lee S.,Seoul National University | Yu K.-R.,Seoul National University | Ryu Y.-S.,Seoul National University | Oh Y.S.,Seoul National University | And 9 more authors.
Age | Year: 2014

Previously, AIMP3 (aminoacyl-tRNAsynthetase-interacting multifunctional protein-3) was shown to be involved in the macromolecular tRNA synthetase complex or to act as a tumor suppressor. In this study, we report a novel role of AIMP3/p18 in the cellular aging of human mesenchymal stem cells (hMSCs). We found that AIMP3/p18 expression significantly increased in senescent hMSCs and in aged mouse bone marrow-derived MSCs (mBM-MSCs). AIMP3/p18 overexpression is sufficient to induce the cellular senescence phenotypes with compromised clonogenicity and adipogenic differentiation potential. To identify the upstream regulators of AIMP3/p18 during senescence, we screened for potential epigenetic regulators and for miRNAs. We found that the levels of miR-543 and miR-590-3p significantly decreased under senescence-inducing conditions, whereas the AIMP3/p18 protein levels increased. We demonstrate for the first time that miR-543 and miR-590-3p are able to decrease AIMP3/p18 expression levels through direct binding to the AIMP/p18 transcripts, which further compromised the induction of the senescence phenotype. Taken together, our data demonstrate that AIMP3/p18 regulates cellular aging in hMSCs possibly through miR-543 and miR-590-3p. © 2014, American Aging Association.

Yu H.-J.,Chonbuk National University | Shin J.-A.,Chonbuk National University | Jung J.-Y.,Kongju National University | Nam J.-S.,Lee Gil Ya Cancer and Diabetes Institute | And 3 more authors.
Head and Neck | Year: 2015

Background The purpose of our study was to investigate the anticancer effect of sorafenib on mucoepidermoid carcinoma (MEC) and find its new molecular mechanism. Methods The apoptotic effects of sorafenib were performed using MTS assay, diamidino-phenylindole (DAPI) staining, Western blotting, reverse transcription-polymerase chain reaction (RT-PCR), siRNA, and xenograft. Results Sorafenib had apoptotic effects on MC-3 and YD15 cells and decreased myeloid cell leukemia-1 (Mcl-1) through proteasome-dependent protein degradation and the inhibition of protein synthesis. Sorafenib significantly affected truncated bid (t-Bid) and siMcl-1 resulting in the upregulation of t-Bid to induce apoptosis. Signal transducer and activator of transcription 3 (STAT3) phosphorylation was also blocked by sorafenib and a potent STAT3 inhibitor, cryptotanshinone clearly induced poly ADP-ribose polymerase (PARP) cleavage by inhibiting Mcl-1 and increasing t-Bid. Finally, administration of sorafenib significantly suppressed tumor growth and induced apoptosis in tumor xenograft model in association with downregulation of Mcl-1 without any side effects. Conclusion Taken together, these findings suggest that sorafenib can be a good anticancer drug candidate for the treatment of MEC. © 2014 Wiley Periodicals, Inc. Head Neck 37: 1326-1335, 2015 © 2014 Wiley Periodicals, Inc.

Jang S.-Y.,University of Seoul | Kang H.T.,University of Seoul | Kang H.T.,Lee Gil Ya Cancer and Diabetes Institute | Kang H.T.,Seoul National University | Hwang E.S.,University of Seoul
Journal of Biological Chemistry | Year: 2012

Active autophagy coupled with rapid mitochondrial fusion and fission constitutes an important mitochondrial quality control mechanism and is critical to cellular health. In our previous studies, we found that exposure of cells to nicotinamide causes a decrease in mitochondrial content and an increase in mitochondrial membrane potential (MMP) by activating autophagy and inducing mitochondrial fragmentation. Here, we present evidence to show that the effect of nicotinamide is mediated through an increase of the [NAD+]/[NADH] ratio and the activation of SIRT1, an NAD+-dependent deacetylase that plays a role in autophagy flux. The [NAD+]/[NADH] ratio was inversely correlated with the mitochondrial content, and an increase in the ratio by the mobilization of the malate-aspartate shuttle resulted in autophagy activation and mitochondrial transformation from lengthy filaments to short dots. Furthermore, treatment of cells with SIRT1 activators, fisetin or SRT1720, induced similar changes in the mitochondrial content. Importantly, the activators induced mitochondrial fragmentation only when SIRT1 expression was intact. Meanwhile, MMP did not increase when the cells were treated with the activators, suggesting that the change in MMP is not induced by the mitochondrial turnover per se and that elevation of the [NAD+]/[NADH] ratio may activate additional mechanisms that cause MMP augmentation. Together, our results indicate that a metabolic state resulting in an elevated [NAD +]/[NADH] ratio can modulate mitochondrial quantity and quality via pathways that may include SIRT1-mediated mitochondrial autophagy. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

Lee K.M.,Ajou University | Lee J.S.,Lee Gil Ya Cancer and Diabetes Institute | Jung H.S.,Lee Gil Ya Cancer and Diabetes Institute | Park D.K.,Lee Gil Ya Cancer and Diabetes Institute | And 2 more authors.
Cancer Letters | Year: 2010

As much as that a disturbance of tissue homeostasis through dysregulated apoptosis is generally associated with carcinogenesis, gastric carcinogenesis after Helicobacter pylori infection could be the accumulated consequence of imbalances between apoptosis and proliferation. Since sonic hedgehog (Shh) has been reported to play versatile roles in various tumorigenesis, we hypothesized that late reactivation of sonic hedgehog by H. pylori infection results in population of gastric epithelial cells that are resistant to apoptosis. The Resistant Clones against H. pylori-induced Apoptosis (RCHA) were established and maintained up to 19th cell passages, during which the serial changes of Shh expression were measured. Apoptosis was measured in N-Shh over-expressed stable cell lines and compared with parent cell line after either infected with H. pylori or treated with cyclopamine. For clinical relevance, the expressions of Shh were compared in tissues from gastric adenoma or adenocarcinoma according to H. pylori infection. Longer passages of RCHA after H. pylori infection, the higher expressions of Shh, suggesting RCHA was associated with the reactivation of Shh. Significant decrement in subG1 phase of cell cycle and attenuated executions of apoptosis after H. pylori infection in cells of Shh overexpression, whereas either Shh siRNA or cyclopamine increased the H. pylori-induced cytotoxicity and significantly abrogated anti-apoptotic actions imposed by Shh. Significantly higher expressions of Shh were seen in H. pylori-associated gastric cancers than H. pylori-not associated gastric cancer. Late reactivation of sonic hedgehog by H. pylori infection results in population of gastric epithelial cells that are resistant to apoptosis and imposes proliferative changes under the background of atrophic gastritis, providing the carcinogenic basis. © 2009 Elsevier Ireland Ltd. All rights reserved.

Yi J.-S.,Korea University | Park J.S.,Korea University | Ham Y.-M.,Korea University | Nguyen N.,Korea University | And 25 more authors.
Nature Communications | Year: 2013

Mitsugumin 53 (MG53) negatively regulates skeletal myogenesis by targeting insulin receptor substrate 1 (IRS-1). Here, we show that MG53 is an ubiquitin E3 ligase that induces IRS-1 ubiquitination with the help of an E2-conjugating enzyme, UBE2H. Molecular manipulations that disrupt the E3-ligase function of MG53 abolish IRS-1 ubiquitination and enhance skeletal myogenesis. Skeletal muscles derived from the MG53-/-mice show an elevated IRS-1 level with enhanced insulin signalling, which protects the MG53-/-mice from developing insulin resistance when challenged with a high-fat/high-sucrose diet. Muscle samples derived from human diabetic patients and mice with insulin resistance show normal expression of MG53, indicating that altered MG53 expression does not serve as a causative factor for the development of metabolic disorders. Thus, therapeutic interventions that target the interaction between MG53 and IRS-1 may be a novel approach for the treatment of metabolic diseases that are associated with insulin resistance. © 2013 Macmillan Publishers Limited.

PubMed | Ajou University and Lee Gil Ya Cancer and Diabetes Institute
Type: | Journal: Scientific reports | Year: 2016

Individuals with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) induced by high calorie western diet are characterized by enhanced lipogenesis and gluconeogenesis in the liver. Stimulation of reductive amination may shift tricarboxylic acid cycle metabolism for lipogenesis and gluconeogenesis toward glutamate synthesis with increase of NAD+/NADH ratio and thus, ameliorate high calorie diet-induced fatty liver and hyperglycemia. Stimulation of reductive amination through glutamate dehydrogenase (GDH) activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced both de novo lipogenesis and gluconeogenesis but increased the activities of sirtuins and AMP-activated kinase in primary hepatocytes. Long-term BCH treatment improved most metabolic alterations induced by high fat/high fructose (HF/HFr) diet in C57BL/6J mice. BCH prevented HF/HFr-induced fat accumulation and activation of stress/inflammation signals such as phospho-JNK, phospho-PERK, phospho-p38, and phospho-NFB in liver tissues. Furthermore, BCH treatment reduced the expression levels of inflammatory cytokines such as TNF- and IL-1 in HF/HFr-fed mouse liver. BCH also reduced liver collagen and plasma levels of alanine transaminase and aspartate transaminase. On the other hand, BCH significantly improved fasting hyperglycemia and glucose tolerance in HF/HFr-fed mice. In conclusion, stimulation of reductive amination through GDH activation can be used as a strategy to prevent high calorie western diet-induced NAFLD and T2D.

Loading Lee Gil Ya Cancer and Diabetes Institute collaborators
Loading Lee Gil Ya Cancer and Diabetes Institute collaborators