Entity

Time filter

Source Type


Porta D.,Lazio Regional Health Service ASL RME | Fantini F.,Local Health Unit Rome Grant | De Felip E.,National Institute for Health | Blasetti F.,Local Health Unit Rome Grant | And 7 more authors.
Environmental Health: A Global Access Science Source | Year: 2013

Background: A chemical plant manufacturing pesticides has been operating since the 1950's in the Sacco River Valley (Central Italy). In 2005, high beta-hexachlorocyclohexane (Beta-HCH) concentrations were found in milk of cows raised and fed near the river. We report the results of a biomonitoring study conducted in this region to evaluate the body burden of Beta-HCH and to identify the determinants of the human contamination. Methods. We defined four residential areas by their distance from the chemical plant and the river, and selected a stratified random sample of 626 people aged 25-64 years. We evaluated the association, in terms of the geometric mean ratio (GMR), between several potential determinants and Beta-HCH serum concentrations using multivariate linear regression analysis. Results: Two hundred forty-six serum samples were analysed to assess Beta-HCH levels (mean concentration: 99 ng/g lipid; Standard Deviation: 121; Geometric Mean: 60.6; Geometric Standard Deviation: 2.65). We found a strong association between Beta-HCH and living in the area close to the river (GMR: 2.00; 95%CI: 1.36-2.94). Beta-HCH levels were also associated with age, level of education, use of private wells and consumption of local food. Conclusions: The results suggest that people living close to the river may have been contaminated by Beta-HCH, most likely through water from private wells and privately grown food. A programme of epidemiological and clinical surveillance is on-going on this population. © 2013 Porta et al.; licensee BioMed Central Ltd. Source


Fuertes E.,Helmholtz Center for Environmental Research | Fuertes E.,University of British Columbia | MacIntyre E.,Helmholtz Center for Environmental Research | Agius R.,University of Manchester | And 31 more authors.
International Journal of Hygiene and Environmental Health | Year: 2014

Evidence for a role of long-term particulate matter exposure on acute respiratory infections is growing. However, which components of particulate matter may be causative remains largely unknown. We assessed associations between eight particulate matter elements and early-life pneumonia in seven birth cohort studies (Ntotal=15,980): BAMSE (Sweden), GASPII (Italy), GINIplus and LISAplus (Germany), INMA (Spain), MAAS (United Kingdom) and PIAMA (The Netherlands). Annual average exposure to copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc, each respectively derived from particles with aerodynamic diameters≤10μm (PM10) and 2.5μm (PM2.5), were estimated using standardized land use regression models and assigned to birth addresses. Cohort-specific associations between these exposures and parental reports of physician-diagnosed pneumonia between birth and two years were assessed using logistic regression models adjusted for host and environmental covariates and total PM10 or PM2.5 mass. Combined estimates were calculated using random-effects meta-analysis. There was substantial within and between-cohort variability in element concentrations. In the adjusted meta-analysis, pneumonia was weakly associated with zinc derived from PM10 (OR: 1.47 (95% CI: 0.99, 2.18) per 20ng/m3 increase). No other associations with the other elements were consistently observed. The independent effect of particulate matter mass remained after adjustment for element concentrations. In conclusion, associations between particulate matter mass exposure and pneumonia were not explained by the elements we investigated. Zinc from PM10 was the only element which appeared independently associated with a higher risk of early-life pneumonia. As zinc is primarily attributable to non-tailpipe traffic emissions, these results may suggest a potential adverse effect of non-tailpipe emissions on health. © 2014 The Authors. Source

Discover hidden collaborations