Time filter

Source Type

Cseresnyes Z.,Leibniz Institute | Cseresnyes Z.,Max Delbruck Center for Molecular Medicine | Oehme L.,Leibniz Institute | Andresen V.,LaVision Biotec GmbH | And 4 more authors.
Journal of Visualized Experiments | Year: 2014

Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 μm tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells - on the level of a few protein molecules in germinal centers.

Hagerling R.,Max Planck Institute for Molecular Biomedicine | Pollmann C.,Max Planck Institute for Molecular Biomedicine | Kremer L.,Max Planck Institute for Molecular Biomedicine | Andresen V.,LaVision Biotec GmbH | Kiefer F.,Max Planck Institute for Molecular Biomedicine
Biochemical Society Transactions | Year: 2011

Lymphatic vessels, the second vascular system of higher vertebrates, are indispensable for fluid tissue homoeostasis, dietary fat resorption and immune surveillance. Not only are lymphatic vessels formed during fetal development, when the lymphatic endothelium differentiates and separates from blood endothelial cells, but also lymphangiogenesis occurs during adult life under conditions of inflammation, wound healing and tumour formation. Under all of these conditions, haemopoietic cells can exert instructive influences on lymph vessel growth and are essential for the vital separation of blood and lymphatic vessels. LECs (lymphatic endothelial cells) are characterized by expression of a number of unique genes that distinguish them from blood endothelium and can be utilized to drive reporter genes in a lymph endothelial-specific fashion. In the present paper, we describe the Prox1 (prospero homeobox protein 1) promoter-driven expression of the fluorescent protein mOrange2, which allows the specific intravital visualization of lymph vessel growth and behaviour during mouse fetal development and in adult mice. ©The Authors Journal compilation ©2011 Biochemical Society.

Bal U.,Ege University | Andresen V.,LaVision Biotec GmbH | Baggett B.,University of Arizona | Utzinger U.,University of Arizona
Microscopy and Microanalysis | Year: 2013

Abstract We report our efforts in identifying optimal scanning laser microscope parameters to study cells in three-dimensional culture. For this purpose we studied contrast of extracellular matrix (ECM) mimics, as well as signal attenuation, and bleaching of red and green fluorescent protein labeled cells. Confocal backscattering, second harmonic generation (SHG), and autofluorescence were sources of contrast in ECM mimics. All common ECM mimics exhibit contrast observable with confocal reflectance microscopy. SHG imaging on collagen I based hydrogels provides high contrast and good optical penetration depth. Agarose is a useful embedding medium because it allows for large optical penetration and exhibits minimal autofluorescence. We labeled breast cancer cells' outline with DsRed2 and nucleus with enhanced green fluorescent protein (eGFP). We observed significant difference both for the bleaching rates of eGFP and DsRed2 where bleaching is strongest during two-photon excitation (TPE) and smallest during confocal imaging. But for eGFP the bleaching rate difference is smaller than for DsRed2. After a few hundred microns depth in a collagen I hydrogel, TPE fluorescence of DsRed2 becomes twice as strong compared to confocal imaging. In fibrin and agarose gels, the imaging depth will need to be beyond 1 mm to notice a TPE advantage. Copyright © Microscopy Society of America 2013.

LAVISION BIOTEC GmbH | Date: 2012-08-10

The invention relates to a laser assembly (

Hagerling R.,Max Planck Institute for Molecular Biomedicine | Pollmann C.,Max Planck Institute for Molecular Biomedicine | Andreas M.,Max Planck Institute for Molecular Biomedicine | Schmidt C.,Max Planck Institute for Molecular Biomedicine | And 7 more authors.
EMBO Journal | Year: 2013

During mammalian development, a subpopulation of endothelial cells in the cardinal vein (CV) expresses lymphatic-specific genes and subsequently develops into the first lymphatic structures, collectively termed as lymph sacs. Budding, sprouting and ballooning of lymphatic endothelial cells (LECs) have been proposed to underlie the emergence of LECs from the CV, but the exact mechanisms of lymph vessel formation remain poorly understood. Applying selective plane illumination-based ultramicroscopy to entire wholemount-immunostained mouse embryos, we visualized the complete developing vascular system with cellular resolution. Here, we report emergence of the earliest detectable LECs as strings of loosely connected cells between the CV and superficial venous plexus. Subsequent aggregation of LECs resulted in formation of two distinct, previously unidentified lymphatic structures, the dorsal peripheral longitudinal lymphatic vessel (PLLV) and the ventral primordial thoracic duct (pTD), which at later stages formed a direct contact with the CV. Providing new insights into their function, we found vascular endothelial growth factor C (VEGF-C) and the matrix component CCBE1 indispensable for LEC budding and migration. Altogether, we present a significantly more detailed view and novel model of early lymphatic development. © 2013 European Molecular Biology Organization.

Discover hidden collaborations