Hillsboro, OR, United States

Lattice Semiconductor

www.latticesemi.com
Hillsboro, OR, United States

Lattice Semiconductor Corporation is a United States based manufacturer of high-performance programmable logic devices . Founded in 1983, the company employs about 700 people and has annual revenues of around $300 million, with Darin Billerbeck as the chief executive officer. The Oregon-based company is the number three ranked company in world market share for field programmable gate array devices, and number two for CPLDs & SPLDs. The company went public in 1989 and is traded on the NASDAQ stock exchange under the symbol LSCC. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

A system for receiving and decrypting media content encrypted according to the HDCP protocol is described herein. A receiving device coupled to a plurality of content channels includes an authentication engine to authenticate each content channel and to generate an initial session key associated with each authenticated content channel. The content channels can be, for example, an HDMI channel or an MHL3 channel. A session key indicator indicating a session key used to encrypt media content is received, and an updated session key is generated. The receiving device also includes a stream cipher engine configured to decrypt received encrypted media content using the updated session key. Decrypted media content can then be displayed, for instance on a display of the receiving device.


Patent
Lattice Semiconductor | Date: 2017-01-30

Systems and methods for beam splitting using multiple antennas are disclosed. An example wireless networking device includes an antenna system having a plurality of antennas; and a controller configured to determine directional antenna weight vectors (AWVs) directed substantially towards other wireless networking devices, determine a split beam AWV from the directional AWVs, and configure the antenna sub-system to form multiple wireless communication channels over the determined split beam AWV between the wireless networking devices. A split beam formed by the wireless networking device according to the split beam AWV maximizes a minimum gain towards, or provides at least a preset threshold minimum gain towards, each of the at other wireless networking devices.


Patent
Lattice Semiconductor | Date: 2017-01-30

Systems and methods for beam splitting using multiple antennas are disclosed. An example wireless networking device includes an antenna system having a plurality of antennas; and a controller configured to select test beam antenna weight vectors (AWVs) configured to detect and/or localize a responder device, receive channel measurement responses corresponding to the test beam AWVs, determine a combined beam AWV directed substantially towards the responder device based, at least in part, on the test beam AWVs and/or the corresponding channel measurement responses, and configure the antenna sub-system to form a wireless communication channel according to the determined combined beam AWV between the wireless networking device and the responder device.


Patent
Lattice Semiconductor | Date: 2016-08-04

Example embodiments disclosed herein relate to a method of transmitting an audio signal and also a method of receiving an audio signal. The method of transmitting the audio signal includes: receiving the audio signal including a plurality of frames having a left and right subframes containing audio data of a first number of bits; encoding the left and right subframes into a parity code of a second number of bits; generating serial data by combining the parity code and the audio data; and transmitting the serial data over an audio transmission media having a bandwidth of a third number of bits, a sum of the first number of bits and the second number of bits being below the third number of bits. The method of receiving the audio signal includes: receiving a serial signal combining a parity code; decoding the serial signal by calculating a syndrome based on the parity code; detecting an error by comparing the syndrome with the audio data; and generating a corrected audio signal by correcting the detected error.


Patent
Lattice Semiconductor | Date: 2016-10-21

Methods and circuitry for relatively low-speed bus time stamping and triggering for use in acoustic object and gesture detection and recognition are presented in this disclosure. A master device and slave devices can be interfaced via a communication link that includes a data line and a clock line. The master device generates and controls a clock signal on the clock line and sends a synchronization command over the data line to the slave devices. The master device receives timestamp and/or other information corresponding to events detected at each slave device, such as a detected acoustic wave reflected from an object. The master device tracks transitions and frequencies of the clock signal, and determines a time of the event based on the timestamp information, the tracked transitions and the frequencies. The master device can use the event times to derive positions and gestures associated with detected objects.


Near-field communication (NFC) system provides a plurality of transmit antennae. The transmit antennae of the plurality have at least two different polarizations. A plurality of receive antennae have polarizations arranged to receive signals from respective antennae of the transmit antennae, such that each polarization of the transmit antennae has a receive antennae with a corresponding polarization. The transmitters are tuned to a transmit frequency and each have a dimension. A distance between the receive and the transmit antennae is no greater than a greater of twice a maximum dimension squared of the transmit antennae divided by a wavelength of transmission and a wavelength of transmission divided by 2.


Embodiments of the invention are generally directed to transmission and detection of multi-channel signals in reduced channel format. An embodiment of a method for transmitting data includes determining whether a first type or a second type of content data is to be transmitted, where the first type of content data is to be transmitted at a first multiple of a base frequency and the second type of data is to be transmitted at a second multiple of the base frequency. The method further includes selecting one or more channels from a plurality of channels based on the type of content data, clocking a frequency on the first or second multiple of the base frequency according to the type of content data in the selected channels, modifying the content data to fit within a single output channel, and transmitting the modified data via a single output channel at the chosen multiple of the base frequency.


Various techniques are provided to efficiently detect the position and angular velocity of an unmanned aerial vehicle (UAV) of a UAV system including a transmitter antenna array and a receiver antenna array. In one example, a method includes establishing a wireless link between a UAV controller and a UAV using at least one transmitter antenna array and/or at least one receiver antenna array, communicating link state data corresponding to the established wireless link over the established wireless link, generating UAV operational data based, at least in part, on the link state data, wherein the UAV operational data is configured to control operation of the UAV, and controlling operation of the UAV using the UAV operational data.


Patent
Lattice Semiconductor | Date: 2017-01-20

The discovery of a topology of a network with an unknown topology can enable the selection of a data path within the network, and the establishment of a data stream over the selected data path. Routing tables mapping originating nodes to input ports can be created based on the receipt of discovery messages generated by the originating nodes. A source node can select a data path between the source node and a sink node in order to establish a data stream using the routing tables. Data paths can be selected based on, for instance, routing table bandwidth information, latency information, and/or distance information. Data streams can be established over the selected data path, and each node can release any reserved output bandwidth determined to be unnecessary for the data stream.


Patent
Lattice Semiconductor | Date: 2017-09-27

Embodiments of the invention are generally directed to adjustment of clock signals regenerated from a data stream. An embodiment of a method includes receiving a data stream from a transmitting device via a communication link, the data stream including stream data, a link clock signal, and timestamps to indicate a relationship between the link clock signal and a stream clock signal. The method further includes adjusting the stream clock based at least in part on one or more measurements related to the data stream, the one or more measurements including a count of a number of pulses of the stream clock during a period of time, or a measurement of a number of data elements from the data stream stored in a buffer at a certain point in time.

Loading Lattice Semiconductor collaborators
Loading Lattice Semiconductor collaborators