Hillsboro, OR, United States
Hillsboro, OR, United States

Lattice Semiconductor Corporation is a United States based manufacturer of high-performance programmable logic devices . Founded in 1983, the company employs about 700 people and has annual revenues of around $300 million, with Darin Billerbeck as the chief executive officer. The Oregon-based company is the number three ranked company in world market share for field programmable gate array devices, and number two for CPLDs & SPLDs. The company went public in 1989 and is traded on the NASDAQ stock exchange under the symbol LSCC. Wikipedia.


Time filter

Source Type

Patent
Lattice Semiconductor | Date: 2016-07-29

Embodiments of the invention are generally directed driving data of multiple protocols through a single set of pins. An embodiment of an apparatus includes a transmitter connected to two pads on an IC the transmitter including a differential driver to transmit a differential signal, wherein the differential driver has a first branch and a second branch, each branch of the differential driver including a protection device connected to one of the pads; and a common mode driver to transmit a common mode signal, the common mode driver having a first branch and a second branch, each of the branches of the common mode driver including a protection device connected to one of the pads. The first and second switch devices are not turned on simultaneously, based on data to be transmitted, one of the switch devices being turned on and the other being turned off. The third and fourth switch devices are both turned on when the common mode signal is one of a logic HIGH or logic LOW and both turned off when the common mode signal is the other of a logic HIGH or logic LOW.


Patent
Lattice Semiconductor | Date: 2016-01-29

A cable with circuitry that enables the cable to communicate data in one of at least two different signal modes of operation is presented. In a first signal mode, the cable enables data communication between the circuitry and either a source device or a sink device. The first signal mode can be used either to communicate properties of the cable itself or of a signal passing through the cable to either the source device or the sink device. In a second signal mode, the cable enables data communication between the source device and the sink device. The second signal mode can be used to communicate data in accordance with a predetermined protocol.


A disclosed wireless tunneling system determines a suitable configuration of a wireless tunneling apparatus for tunneling communications between two processing apparatuses through a wireless link. Responsive to determining the configuration of the wireless tunneling apparatus, the wireless tunneling system establishes a communication with another wireless tunneling apparatus through the wireless link, while maintaining compliance of the communications between the two processing apparatuses with a wired communication protocol. Moreover, the wireless tunneling apparatus can supply power to or source power from a processing apparatus coupled to the wireless tunneling apparatus through a wired cable.


A disclosed wireless tunneling system tunnels communications between two processing apparatuses through a wireless link, while maintaining compliance of the communications between the two processing apparatuses with at least two different wired communication protocols. In one embodiment, the wireless tunneling system includes two wireless tunneling apparatuses that communicate with each other through the wireless link. A local wireless tunneling apparatus is coupled to a local processing apparatus through a wired connection and a remote wireless tunneling apparatus is coupled to the remote processing apparatus through another wired connection. The two processing apparatuses may communicate with each other through the wireless link using the two wireless tunneling apparatuses as if the two processing apparatuses were connected through wired connections.


Patent
Lattice Semiconductor | Date: 2016-03-17

A disclosed wireless tunneling system tunnels communications between two processing apparatuses through a wireless link, while maintaining compliance of the communications between the two processing apparatuses with a wired communication protocol. In one embodiment, the wireless tunneling system includes two wireless tunneling apparatuses that communicate with each other through the wireless link. A local wireless tunneling apparatus is coupled to a local processing apparatus through a wired connection and a remote wireless tunneling apparatus is coupled to the remote processing apparatus through another wired connection. In one aspect, the local wireless tunneling apparatus predicts a state of the remote processing apparatus, and mirrors the predicted state of the remote processing apparatus. Mirroring the state based on the prediction enables high speed data rate tunneling between the two processing apparatuses through the wireless link without a delay associated with the wireless tunneling apparatuses affecting the high speed data rate tunneling.


In one embodiment, a ball grid array (BGA) of a packaged semiconductor device and a corresponding landing pad array of a printed circuit board each have a layout defined by an interconnection array having (i) an inner sub-array of locations having connectors arranged in rows and columns separated by a specified pitch and (ii) an outer rectangular ring of locations having connectors arranged in rows and columns separated by the specified pitch. The outer rectangular ring is separated from the inner sub-array by a depopulated rectangular ring having a width of at least twice the specified pitch, wherein the depopulated rectangular ring has no connectors. The outer rectangular ring has empty locations having no connectors. Some of those empty locations define depopulated sets that divide the outer rectangular ring into a number of different contiguous sets of locations having connectors that enable pin escape for connectors of the devices BGA.


Aspects relate to correcting Inphase/Quadrature (I/Q) imbalances across multiple wireless elements such as multiple receive elements or multiple transmit elements. In one example implementation, I/Q imbalances can be corrected using a digital circuit provided within a digital portion of a direct conversion wireless element (upconversion or downconversion) that implements only two multiplications and one addition per pair of I and Q samples.


Patent
Lattice Semiconductor | Date: 2016-01-15

A device for communications over a multimedia communication interface. The device can be a source device including a scrambling circuit that receives control data associated with multimedia data to be transmitted over the multimedia channel of the multimedia communication interface, and generates scrambled control codes based on the control data. An encoding circuit generates transition minimized control codes based on the scrambled control codes. The device transmits the transition minimized control codes to a sink device via the multimedia channel. The sink device may also decode and de-scramble the transition minimized control codes received from the source device via the multimedia channel.


Patent
Lattice Semiconductor | Date: 2016-03-17

Disclosed wireless tunneling system includes two wireless tunneling apparatuses that communicate with each other through the wireless link. A local wireless tunneling apparatus is coupled to a local processing apparatus through a wired connection and a remote wireless tunneling apparatus is coupled to the remote processing apparatus through another wired connection. The two processing apparatuses bi-directionally communicate with each other through the wireless link using the two wireless tunneling apparatuses as if the two processing apparatuses were connected through a wired connection.


Patent
Lattice Semiconductor | Date: 2016-01-07

A first network signal is received indicating a device identifier in response to a transaction involving an electronic device uniquely associated with the device identifier. An entity identifier specific to an entity associated with the transaction is determined. In response to an initialization event of the electronic device, a second network signal from the electronic device is received that identifies the electronic device. In response to the second network signal, a configuration is communicated to the electronic device that is specific to the entity associated with the transaction.

Loading Lattice Semiconductor collaborators
Loading Lattice Semiconductor collaborators