Lappeenranta University of Technology

www.lut.fi/en
Lappeenranta, Finland

Lappeenranta University of Technology was established in 1969. The university campus is situated on the shore of lake Saimaa, about 7 kilometres away from the city center. In the 1950s and 1960s, the Finnish government made plans to establish the University of Eastern Finland in Lappeenranta, but in the end it was decentralized in three cities: Lappeenranta, Kuopio, and Joensuu. Only departments of engineering were located in Lappeenranta at that time. The Department of Business Administration was established and teaching of economics began in 1991.Nowadays, LUT’s strategic focus areas are green energy and technology, the creation of sustainable competitiveness and operation as a hub of international Russian relations. Being located near the eastern boundary of Finland, the university also offers comprehensive know-how related to Russia. Furthermore, LUT cooperates closely with business life, and next to the university lies Technology Centre Kareltek. LUT is state run and state funded, like all other universities in Finland.In 2011 LUT started Green Campus -project. LUT Green Campus is a unique research and educational environment, where the university's expertise in energy as well as its own innovations are put to practical use. Green Campus is an example on how science and technology can be used to solve environmental problems and build a sustainable world.There are about 960 staff members and 6,900 students in the university. In LUT one can graduate in the following degrees: Bachelor of Science , Bachelor of Science , Master of Science , Master of Science , Licentiate of Science , Licentiate of Science , Doctor of Science , Doctor of Science , and Doctor of Philosophy. LUT has several internationally accredited Master´s programmes. Master's degree programme in International Marketing Management was awarded EFMD`s EPAS-accreditation for five years in 2012. EUR-ACE and ASIIN-accredited programmes LUT has in Chemical Engineering, in Energy Technology, in Environmental Technology,in Mechanical Engineering, in Electrical Engineering and in Industrial Management. Wikipedia.


Time filter

Source Type

Patent
Lappeenranta University of Technology | Date: 2015-03-02

An electrical turbo-machine includes a stator (101), a rotor (102), and a turbine section (110) driven with a working flow containing vaporizable material, for example water, in vaporized form. The rotor includes cooling channels (106-109) for conducting, through the rotor, a cooling flow containing the vaporizable material in liquid form. The rotor is arranged to conduct the cooling flow through an area where an impeller or impellers (111-114) of the turbine section are directly connected to the rotor and conduct the cooling flow to a same room to which the working flow comes out from the turbine section. The above-presented cooling system facilitates constructing the electrical turbo-machine as a hermetic structure in a power plant where bearings of the electrical turbo-machine are lubricated by the vaporizable material, a supply pump is directly connected to the rotor, and the vaporizable material in gaseous form fills the gas spaces of the stator.


Patent
Lappeenranta University of Technology | Date: 2015-05-29

A control device (101) for controlling a magnetic levitation system includes a controller (103) for controlling one or more voltages directed to one or more windings of the magnetic levitation system on the basis of a deviation of a position of an object (108) to be levitated from a reference position so as to control a resultant magnetic force directed to the object. The controller selects, for each of temporally successive control periods, a control direction so that ability of the resultant magnetic force to decrease the deviation of the position is improved when the resultant magnetic force is changed in the selected control direction. Thereafter, the one or more voltages are selected in accordance with the selected control direction so as to decrease the deviation of the position by changing the resultant magnetic force. Thus, there is no need for nested control loops which are typically challenging to tune.


Patent
Lappeenranta University of Technology | Date: 2017-04-12

There can be provided an engine control apparatus having a controller operable to receive input from a heat flux sensor arranged to measure combustion power within an internal combustion engine and to use said input in a control process to determine an adjustment to a controllable engine operation parameter.


Patent
Lappeenranta University of Technology | Date: 2017-03-01

A cable-based distance detector comprises a winding drum (101) for winding a cable, a torque generator (102) for directing torque to the winding drum so as to retract the cable, a measurement drum (103) configured to be rotated by the cable when the cable is wound in by the winding drum or wound off from the winding drum, and an encoder connected to the measurement drum and producing an en- coder signal indicative of revolutions of the measurement drum and the length of the portion of the cable wound in or off. As there is the separate measurement drum, the measurement is more accurate than in cases where revolutions of the winding drum are measured because different turns of the cable on the winding drum may have different lengths. The cable-based distance detector is suitable for a system for generating calibration data for a robot.


Patent
Lappeenranta University of Technology | Date: 2017-03-01

A method and system for generating deviation data indicative of inaccuracy in kinematic parameters of a robot are presented. In the method, a planar reference surface is placed in a fixed position with respect to a base frame of the robot. An end- effector of the robot is controlled (202, 203) to be successively in four or more test positions. For each test position, a distance from the end-effector to a test position-specific test point on the planar reference surface is detected (204). Estimate positions of the tests points are obtained (205) on the basis of the detected distances and joint variables corresponding to each of the test positions. The deviation data is based on deviations of the estimate positions from a geometric plane. These deviations indicate the inaccuracy in the kinematic parameters because the real positions of the test points are coplanar because they belong to the planar reference surface.


Patent
Lappeenranta University of Technology | Date: 2017-04-12

A control device (101) for controlling a magnetic levitation system comprises a controller (103) for controlling one or more voltages directed to one or more windings of the magnetic levitation system on the basis of a deviation of a position of an object (108) to be levitated from a reference position so as to control a resultant magnetic force directed to the object. The controller selects, for each of temporally successive control periods, a control direction so that ability of the resultant magnetic force to decrease the deviation of the position is improved when the resultant magnetic force is changed in the selected control direction. Thereafter, the one or more voltages are selected in accordance with the selected control direction so as to decrease the deviation of the position by changing the resultant magnetic force. Thus, there is no need for nested control loops which are typically challenging to tune.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: INNOSUP-7-2015 | Award Amount: 1.69M | Year: 2016

Current research and practice on Open Innovation (OI) has not given emphasis on the ability of SMEs to develop and implement OI strategies - the lessons learned from large firms are not readily transferable to their context. INSPIRE aims to thoroughly investigate how OI is managed and organised in SMEs in order to leverage and expand the existing scattered initiatives and professionalize their services. The project seeks to understand in depth good practices of OI in SMEs across Europe, including the barriers they experience, the critical success factors and the open innovation pathways they follow. Good practices will be identified in all varieties of SMEs in terms of economic context, innovation trajectory (e.g. both high-tech and low-tech SMEs) and stage of lifetime. The understanding of good practices will allow the design, development and validation of an Integrated Toolbox for OI in SMEs to enable the professional management of OI by SMEs in various kinds of open innovation initiatives (e.g. facilitated by large corporations, private-public partnerships). The Toolbox will include good practices, indicators and management modules to support the internal innovation activities of an SME and their interaction with OI partners. The Toolbox will be modular and it will include three prototypical scenarios of usage that can be flexibly adjusted to individual needs of SMEs. The Integrated Toolbox will be developed as a web platform and it will be validated through a series of pilots in real life OI projects carried out by SMEs across Europe. Moreover, the project will develop a deployment plan for the Open Innovation System to initiate an EU-wide strategic engagement of innovation stakeholders and spread the practices of OI. The consortium includes a variety of competencies to access the whole Open Innovation chain across a range of geographical, economic and SMEs contexts and includes academics, practitioners and intermediaries working with SMEs on Open Innovation.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 4.00M | Year: 2017

Nanowires (NWs) exhibit unique properties that make them potential building blocks for a variety of next generation NanoElectronics devices. Recent advances have shown that NWs with predefined properties can be grown, offering a new paradigm enabling functional device prototypes including: biosensors, solar cells, transistors, quantum light sources and lasers. The critical mass of scientific knowledge gained now needs to be translated into NW technologies for industry. FP7-MC NanoEmbrace (ITN) and FUNPROB (IRSES), made substantial contributions to NW research, producing excellent scientific and technological results (>100 journal papers published) and delivered outstanding training in nanoscience and transferable skills to ESRs. Despite demonstrable scientific and technological advantages of NWs, NW-based technology concepts have not yet been translated into market-ready products, because industry and academia have not worked hand-in-hand to commercialize the research findings. Thus, it is essential that NW research is now directed towards customer-oriented scientific R&D; whilst applying innovative industrial design techniques to ensure rapid translation of the basic technologies into commercial devices. This ambitious challenge requires close collaboration between academia and the nascent NW industry, combining the efforts of scientists and engineers to address market needs. Building upon our previous achievements, a team of leading scientific experts from top institutions in Europe, strengthened by experts in innovative design and industrial partners with an excellent track record of converting cutting edge scientific ideas into market products has formed the INDEED network to address this challenge. To enhance employability, INDEED will train young ESRs to become experts with a unique skill set that includes interdisciplinary scientific techniques, industrial experience through R&D secondments and innovative design skills.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-08-2016-2017 | Award Amount: 5.56M | Year: 2016

The FLEDGED project will deliver a process for Bio-based dimethyl Ether (DME) production from biomass. The FLEDGED project will combine a flexible sorption enhanced gasification (SEG) process and a novel sorption enhanced DME synthesis (SEDMES) process to produce DME from biomass with an efficient and low cost process. The primary aim of FLEDGED project is to develop a highly intensified and flexible process for DME production from biomass and validate it in industrially relevant environments. This objective will be accomplished by: - Experimental validation of the flexible SEG process at TRL5; - Experimental validation of the flexible SEDMES process at TRL5; - Evaluation of the full biofuel production chain from energy, environmental, economic, socio-economic and risk point of view; - Preparation of the ground for future exploitation of the results of the project beyond FLEDGED, by including in the consortium industrial partners along the whole biofuel production chain. By combining the SEG and the SEDMES processes, the FLEDGED project will validate a plant concept that: - is characterized by a tremendous process intensification: sorption of CO2 in the gasifier and of water in the DME reactor allows designing an overall process for DME production with only two fundamental steps and with reduced units for syngas conditioning - allows operating with a wide range of biomass feedstocks - will be more efficient than competitive processes and expected to have a lower cost, thanks to the reduced number of components, the avoidance or significant reduction of recycles and the avoidance of energy consuming and costly air separation and CO2 separation units - is capable of producing syngas with tailored composition by adapting the SEG process parameters, which allows coupling with an electrolysis system for converting excess intermittent renewable electricity into a high value liquid fuel


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-1.3-2014 | Award Amount: 4.68M | Year: 2015

DORA project is aiming at design and establishment of an integrated information system that helps passengers to optimise travel time from an origin of the travel to the airplane at the departing airport as well as from the arrival airport to the final destination. With it, the DORA integrated information system, which will be created within the project together with necessary software platforms and end user applications, is aiming at reduction of overall time needed for a typical European air travel including necessary time needed for transport to and from the airports. To ensure this, the DORA system will provide mobile, seamless, and time optimised route recommendations for the travels to the airport and time optimised routing within the airports, leading the passengers through terminals to the right security and departure gates. The DORA will integrate all necessary real time information on disruptions in the land transport environments and on incidents in the airport terminals to provide the fastest route alternatives, ensuring the accessibility of airport and airplane at any time in accordance with individual passengers requirements. The DORA system will be designed in a generic way, to ensure that it can be widely adopted independently on passengers and airports locations. In the project, the DORA system will be implemented and tested in realistic environments involving cities of Berlin and Palma di Mallorca as well corresponding airports in both cities with involvement of at least 500 real end users passengers in the trials. To support the passengers route optimisation, the DORA project will investigate and design technologies for recognition of waiting queues and indoor location services in airports, which will be integrated into the DORA system and tested within the project trials.

Loading Lappeenranta University of Technology collaborators
Loading Lappeenranta University of Technology collaborators