Time filter

Source Type

Stahnke H.,German Federal Institute for Risk Assessment | Kittlaus S.,Carl Zeiss GmbH | Kempe G.,Landesuntersuchungsanstalt fur das Gesundheits und Veterinarwesen Sachsen | Hemmerling C.,Landeslabor Berlin Brandenburg | Alder L.,German Federal Institute for Risk Assessment
Journal of Mass Spectrometry | Year: 2012

This study investigates to which extent the design of electrospray ion sources influences the susceptibility to matrix effects (MEs) in liquid chromatography-tandem mass spectrometry (LC-MS/MS). For this purpose, MEs were measured under comparable conditions (identical sample extracts, identical LC column, same chromatographic method and always positive ion mode) on four LC-MS/MS instrument platforms. The instruments were combined with five electrospray ion sources, viz. Turbo Ion Spray, Turbo VTM Source, Standard ESI, Jet Stream ESI and Standard Z-Spray Source. The comparison of MEs could be made at all retention times because the method of permanent postcolumn infusion was applied. The MEs ascertained for 45 pesticides showed for each electrospray ion source the same pattern, i.e. the same number of characteristic signal suppressions at equivalent retention times in the chromatogram. The Turbo Ion Spray (off-axis geometry), Turbo VTM Source (orthogonal geometry) and the Standard Z-Spray Source (double orthogonal geometry) did not differ much in their susceptibility to MEs. The Jet Stream ESI (orthogonal geometry) reaches a higher sensitivity by an additional heated sheath gas, but suffers at the same time from significantly stronger signal suppressions than the comparable Standard ESI (orthogonal geometry) without sheath gas. No relation between source geometry and extent of signal suppression was found in this study. Copyright © 2012 John Wiley & Sons, Ltd.

Schirmeister F.,German Federal Institute for Risk Assessment | Wieczorek A.,German Federal Institute for Risk Assessment | Dieckmann R.,German Federal Institute for Risk Assessment | Taureck K.,Landesuntersuchungsanstalt fur das Gesundheits und Veterinarwesen Sachsen | Strauch E.,German Federal Institute for Risk Assessment
International journal of medical microbiology : IJMM | Year: 2014

Vibrio furnissii and Vibrio fluvialis are two closely related species which are regarded as emerging human pathogens. Human infections have been mainly associated with consumption of seafood or drinking of contaminated water. V. furnissii strains can be distinguished from V. fluvialis by their ability to produce gas from fermentation of carbohydrates. In this study, we compare two phenotypic (biochemical testing and matrix-assisted laser desorption/ionisation time of flight mass spectrometry, MALDI-TOF MS) and three genotypic techniques (rpoB sequencing, conventional PCR and real-time PCR) for determination of the two species. The methods were evaluated on a collection of 42 V. furnissii and 32 V. fluvialis strains, which were isolated from marine environments and from animals intended for food production. Four of the applied methods allowed the unambiguous discrimination of the two species, while the biochemical testing was the least reliable technique, due to a high variation in the phenotype of gas production from carbohydrates. In view of the One Health concept reliable diagnostic techniques are a prerequisite for preventive public health measurements, as pathogens isolated from animals can cross species borders and methods for detection of sources, reservoirs and ways of transmission of pathogenic bacteria are indispensable for the prevention of infectious diseases in humans and animals. Copyright © 2014 Elsevier GmbH. All rights reserved.

Otto P.H.,Friedrich Loeffler Institute | Rosenhain S.,Friedrich Loeffler Institute | Elschner M.C.,Friedrich Loeffler Institute | Hotzel H.,Friedrich Loeffler Institute | And 4 more authors.
Veterinary Microbiology | Year: 2015

Rotaviruses (RVs) are a major cause of neonatal diarrhoea in humans and animals worldwide. In this study, 425 faecal samples were collected between 1999 and 2013 from diarrhoeic livestock and companion animals at different locations in Germany and tested for RVs. A previously published real-time RT-PCR assay was optimized for detection of a larger variety of RV species A (RVA) strains, and real-time RT-PCR assays for detection of RV species B (RVB) and C (RVC) were newly developed. The detection limits of the assays were 1.54×102, 3.95×102 and 3.60×103 genome copies for RVA, RVB and RVC, respectively. RVA was identified in 85.2% of bovine samples, 51.2% of porcine samples, 50.0% of feline samples, 43.2% of equine samples and 39.7% of canine samples. RVB was found in 3.0% of bovine samples, 2.7% of equine samples and 1.6% of porcine samples. RVC was detected in 31.0% of porcine samples, 21.7% of feline samples, 9.0% of canine samples and 6.0% of bovine samples. For genotyping, 101 RVA-positive bovine samples were further analysed by semi-nested RT-PCR. Genotype combination G6P[5] was most frequently detected (67.3% of samples), followed by G6P[11] (13.9%), G10P[5] (4.0%), G8P[11] (3.0%), G6P[1] (1.0%), and G10P[11] (1.0%). Mixed RVA infections were detected in 5.9% of samples; no or incomplete typing was possible in 4.0% of the samples. This first overview on RV species and RVA genotypes in diarrhoeic livestock and companion animals from Germany indicates a broad circulation of a large variety of RVs. © 2015 Elsevier B.V.

Uphoff H.,Hessisches Landes Prufungs und Untersuchungsamt im Gesundheitswesen | an der Heiden M.,Robert Koch Institute | Schweiger B.,Robert Koch Institute | Campe H.,Bayerisches Landesamt fur Gesundheit und Lebensmittelsicherheit | And 11 more authors.
PLoS ONE | Year: 2011

During the autumn wave of the pandemic influenza virus A/(H1N1) 2009 (pIV) the German population was offered an AS03-adjuvanted vaccine. The authors compared results of two methods calculating the effectiveness of the vaccine (VE). The test-negative case-control method used data from virologic surveillance including influenza-positive and negative patients. An innovative case-series methodology explored data from all nationally reported laboratory-confirmed influenza cases. The proportion of reported cases occurring in vaccinees during an assumed unprotected phase after vaccination was compared with that occurring in vaccinees during their assumed protected phase. The test-negative case-control method included 1,749 pIV cases and 2,087 influenza test-negative individuals of whom 6 (0.3%) and 36 (1.7%), respectively, were vaccinated. The case series method included data from 73,280 cases. VE in the two methods was 79% (95% confidence interval (CI) = 35-93%; P = 0.007) and 87% (95% CI = 78-92%; P<0.001) for individuals less than 14 years of age and 70% (95% CI = -45%-94%, P = 0.13) and 74% (95% CI = 64-82%; P<0.001) for individuals above the age of 14. Both methods yielded similar VE in both age groups; and VE for the younger age group seemed to be higher. © 2011 Uphoff et al.

Goerigk D.,University of Leipzig | Theuss T.,University of Leipzig | Pfeffer M.,University of Leipzig | Konrath A.,Landesuntersuchungsanstalt fur das Gesundheits und Veterinarwesen Sachsen | And 5 more authors.
Tierarztliche Praxis Ausgabe G: Grosstiere - Nutztiere | Year: 2014

Orthopoxvirus infections appear to be rare in South American Camelids, because only a few cases have been reported in the literature. Based on a generalized infection with cowpox virus in an alpaca, the clinical symptoms, laboratory diagnostic findings and the pathological changes are described. The case history showed a long treatment because of chronic skin lesions. The main clinical symptom was miliary papules over the entire skin. Furthermore, a bilateral mucopurulent conjunctivitis occurred as well as excessive salivation due to a severe erosive-ulcerative stomatitis. Although the animal received intensive treatment, it died 8 days after admission to the clinic. During necropsy, an erosive-ulcerative laryngitis as well as a necrotising pneumonia and lymphadenitis were observed. Histopathological examination of representative organ samples led to the diagnosis of a suspected orthopoxvirus infection. Electron microscopy and quantitative polymerase chain reaction (qPCR) of tissue samples confirmed this diagnosis. The virus could be isolated in tissue culture and a PCR with subsequent nucleotide sequencing identified cowpox virus as the causative agent for this generalised infection. © Schattauer 2014.

Discover hidden collaborations