Lancaster, United Kingdom
Lancaster, United Kingdom

Time filter

Source Type

Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion errors have been made using time-lapse geophysical measurements through both coupled and uncoupled (also known as sequential) inversion approaches. Despite the appeal and popularity of coupled inversion approaches, their superiority over uncoupled methods has not been proved conclusively; the goal of this work is to provide an objective comparison between the two approaches within a specific inversion modeling framework based on the ensemble Kalman filter (EnKF). Using EnKF and a model of Lagrangian transport, we compare the performance of a fully coupled and uncoupled inversion method for the reconstruction of heterogeneous saturated hydraulic conductivity fields through the assimilation of ERT-monitored tracer test data. The two inversion approaches are tested in a number of different scenarios, including isotropic and anisotropic synthetic aquifers, where we change the geostatistical parameters used to generate the prior ensemble of hydraulic conductivity fields. Our results show that the coupled approach outperforms the uncoupled when the prior statistics are close to the ones used to generate the true field. Otherwise, the coupled approach is heavily affected by "filter inbreeding" (an undesired effect of variance underestimation typical of EnKF), while the uncoupled approach is more robust, being able to correct biased prior information, thanks to its capability of capturing the solute travel times even in presence of inversion artifacts such as the violation of mass balance. Furthermore, the coupled approach is more computationally intensive than the uncoupled, due to the much larger number of forward runs required by the electrical model. Overall, we conclude that the relative merit of the coupled versus the uncoupled approach cannot be assumed a priori and should be assessed case by case. © 2015. American Geophysical Union. All Rights Reserved.

Halsall C.J.,Lancaster UniversityLancaster | Graf C.,Lancaster UniversityLancaster | Cai M.,Polar Research Institute of China | He J.,Polar Research Institute of China | Jones K.,Lancaster UniversityLancaster
Journal of Geophysical Research C: Oceans | Year: 2015

Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OC pesticides), and polybrominated diphenyl ethers (PBDEs) are reported in surficial sediments sampled along cruise transects from the Bering Sea to the central Arctic Ocean. OCs and PCBs all had significantly higher concentrations in the relatively shallow water (<500 m depth) of the Bering-Chukchi shelf areas (e.g., ΣPCB 286±265 pg g-1 dw) compared to the deeper water regions (>500 m) of the Bering Sea and Arctic Ocean (e.g., Canada Basin ΣPCB 149±102 pg g-1 dw). Concentrations were similar to, or slightly lower than, studies from the 1990s, indicating a lack of a declining trend. PBDEs (excluding BDE-209) displayed very low concentrations (e.g., range of median values, 3.5-6.6 pg/g dw). In the shelf areas, the sediments comprised similar proportions of silt and clay, whereas the deep basin sediments were dominated by clay, with a lower total organic carbon (TOC) content. While significant positive correlations were observed between persistent organic pollutant (POP) concentrations and TOC (Pearson correlation, r=0.66-0.75, p <0.05), the lack of strong correlations, combined with differing chemical profiles between the sediments and technical formulations (and/or marine surface waters), indicate substantial chemical processing during transfer to the benthic environment. Marked differences in sedimentation rates between the shallow and deeper water regions are apparent (the ∼5 cm-depth grab samples collected here representing ∼100 years of accumulation for the shelf sediments and ∼1000 years for the deeper ocean regions), which may bias any comparisons. Nonetheless, the sediments of the shallower coastal arctic seas appear to serve as significant repositories for POPs deposited from surface waters. © 2015. The Authors.

Lamb R.,Lancaster UniversityLancaster
Water Resources Research | Year: 2016

This study developed a two-dimensional (2-D) depth-averaged model for morphological changes at natural bends by including a secondary flow correction. The model was tested in two laboratory-scale events. A field study was further adopted to demonstrate the capability of the model in predicting bed deformation at natural bends. Further, a series of scenarios with different setups of sediment-related parameters were tested to explore the possibility of a 2-D model to simulate morphological changes at a natural bend, and to investigate how much physical complexity is needed for reliable modeling. The results suggest that a 2-D depth-averaged model can reconstruct the hydrodynamic and morphological features at a bend reasonably provided that the model addresses a secondary flow correction, and reasonably parameterize grain-sizes within a channel in a pragmatic way. The factors, such as sediment transport formula and roughness height, have relatively less significance on the bed change pattern at a bend. The study reveals that the secondary flow effect and grain-size parameterization should be given a first priority among other parameters when modeling bed deformation at a natural bend using a 2-D model. © 2016. American Geophysical Union. All Rights Reserved.

Graham R.I.,Lancaster University | Graham R.I.,Harper Adams University College | Tummala Y.,Lancaster University | Rhodes G.,UK Center for Ecology and Hydrology | And 4 more authors.
Insects | Year: 2015

Many pathogens and parasites are present in host individuals and populations without any obvious signs of disease. This is particularly true for baculoviruses infecting lepidopteran hosts, where studies have shown that covert persistent viral infections are almost ubiquitous in many species. To date, the infection intensity of covert viruses has rarely been quantified. In this study, we investigated the dynamics of a covert baculovirus infection within the lepidopteran crop pest Spodoptera exempta. A real-time quantitative polymerase chain reaction (qPCR) procedure using a 5' nuclease hydrolysis (TaqMan) probe was developed for specific detection and quantification of Spodoptera exempta nucleopolyhedrovirus (SpexNPV). The qPCR assay indicated that covert baculovirus dynamics varied considerably over the course of the host life-cycle, with infection load peaking in early larval instars and being lowest in adults and final-instar larvae. Adult dissections indicated that, contrary to expectation, viral load aggregation was highest in the head, wings and legs, and lowest in the thorax and abdomen. The data presented here have broad implications relating to our understanding of transmission patterns of baculoviruses and the role of covert infections in host-pathogen dynamics. © 2015 by the authors; licensee MDPI, Basel, Switzerland.

PubMed | Lancaster UniversityLancaster, Lancaster University and International Maize and Wheat Improvement Center El Batan
Type: | Journal: Frontiers in plant science | Year: 2016

Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 M) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance.

Loading Lancaster UniversityLancaster collaborators
Loading Lancaster UniversityLancaster collaborators