Bordeaux, France
Bordeaux, France

Time filter

Source Type

Dimopoulou M.,Bordeaux Polytechnic Institute | Vuillemin M.,INSA Toulouse | Campbell-Sills H.,Bordeaux Polytechnic Institute | Lucas P.M.,Bordeaux Polytechnic Institute | And 13 more authors.
PLoS ONE | Year: 2014

Oenococcus oeni is the bacterial species which drives malolactic fermentation in wine. The analysis of 50 genomic sequences of O. oeni (14 already available and 36 newly sequenced ones) provided an inventory of the genes potentially involved in exopolysaccharide (EPS) biosynthesis. The loci identified are: two gene clusters named eps1 and eps2, three isolated glycoside-hydrolase genes named dsrO, dsrV and levO, and three isolated glycosyltransferase genes named gtf , it3, it4. The isolated genes were present or absent depending on the strain and the eps gene clusters composition diverged from one strain to another. The soluble and capsular EPS production capacity of several strains was examined after growth in different culture media and the EPS structure was determined. Genotype to phenotype correlations showed that several EPS biosynthetic pathways were active and complementary in O. oeni. Can be distinguished: (i) a Wzy -dependent synthetic pathway, allowing the production of heteropolysaccharides made of glucose, galactose and rhamnose, mainly in a capsular form, (ii) a glucan synthase pathway (Gtf), involved in b-glucan synthesis in a free and a cell-associated form, giving a ropy phenotype to growth media and (iii) homopolysaccharide synthesis from sucrose (α-glucan or β-fructan) by glycoside-hydrolases of the GH70 and GH68 families. The eps gene distribution on the phylogenetic tree was examined. Fifty out of 50 studied genomes possessed several genes dedicated to EPS metabolism. This suggests that these polymers are important for the adaptation of O. oeni to its specific ecological niche, wine and possibly contribute to the technological performance of malolactic starters. © 2014 Dimopoulou et al.

Albertin W.,French National Center for Scientific Research | Albertin W.,University of Bordeaux Segalen | Marullo P.,University of Bordeaux Segalen | Marullo P.,LAFFORT Group | And 5 more authors.
Applied and Environmental Microbiology | Year: 2011

Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO2 production rate (Vmax ) was not related to the maximum CO2 production rate per cell. Instead, a highly significant correlation between Vmax and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement. © 2011, American Society for Microbiology.

Marchal A.,University of Bordeaux Segalen | Marullo P.,University of Bordeaux Segalen | Moine V.,Laffort Group | Dubourdieu D.,University of Bordeaux Segalen
Journal of Agricultural and Food Chemistry | Year: 2011

Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine. © 2011 American Chemical Society.

Loading Laffort Group collaborators
Loading Laffort Group collaborators