Time filter

Source Type

Banelli B.,Laboratory of Tumor Genetics | Bonassi S.,Laboratory of Molecular Epidemiology | Casciano I.,Laboratory of Tumor Genetics | Mazzocco K.,Laboratory of Neuroblastoma Research | And 7 more authors.
International Journal of Cancer

The aim of our study was to identify threshold levels of DNA methylation predictive of the outcome to better define the risk group of stage 4 neuroblastic tumor patients. Quantitative pyrosequencing analysis was applied to a training set of 50 stage 4, high risk patients and to a validation cohort of 72 consecutive patients. Stage 4 patients at lower risk and ganglioneuroma patients were included as control groups. Predictive thresholds of methylation were identified by ROC curve analysis. The prognostic end points of the study were the overall and progression-free survival at 60 months. Data were analyzed with the Cox proportional hazard model. In a multivariate model the methylation threshold identified for the SFN gene (14.3.3σ) distinguished the patients presenting favorable outcome from those with progressing disease, independently from all known predictors (Training set: Overall Survival HR 8.53, p 5 0.001; Validation set: HR 4.07, p 5 0.008). The level of methylation in the tumors of high-risk patients surviving more than 60 months was comparable to that of tumors derived from lower risk patients and to that of benign ganglioneuroma. Methylation above the threshold level was associated with reduced SFN expression in comparison with samples below the threshold. Quantitative methylation is a promising tool to predict survival in neuroblastic tumor patients. Our results lead to the hypothesis that a subset of patients considered at high risk-but displaying low levels of methylation-could be assigned at a lower risk group. © 2009 UICC. Source

Casciano I.,Laboratory of Tumor Genetics | Di Vinci A.,Laboratory of Tumor Genetics | Banelli B.,Laboratory of Tumor Genetics | Brigati C.,Laboratory of Tumor Genetics | And 3 more authors.
Breast Care

In 1940, it was demonstrated that free DNA could be identified in the bloodstream. It was later shown that circulating nucleic acids (CNA), both DNA and RNA, are present in several neoplastic and non-neoplastic diseases, and that in cancer they originate mostly from the tumor. In this review, we discuss the potential application of CNA as a breast cancer biomarker for early diagnosis and patient evaluation. Most of the initial studies on CNA compared the levels of CNA in cancer patients and healthy individuals. To increase sensitivity and specificity, cancer-specific molecular alterations were then utilized. In this respect, epigenetic alterations and micro-RNA offer considerable advantages over mutations because of their easiness of detection. Epigenetic signatures, being early events of carcinogenesis, may also be valuable markers for screening purposes. Monitoring the follow-up of the patients is one of the most interesting applications of CNA-based assays, and it is reasonable to hypothesize that CNA may become a surrogate marker for circulating cancer cells in the prediction of patient outcome. Transferring these findings to the clinical practice is the next effort, and this will be possible when a 'common language' is defined to allow proper validation of these new markers. Copyright © 2010 S. Karger AG, Basel. Source

Discover hidden collaborations