Entity

Time filter

Source Type


Talukder A.K.,InterpretOmics | Ravishankar S.,InterpretOmics | Sasmal K.,InterpretOmics | Gandham S.,InterpretOmics | And 5 more authors.
PLoS ONE | Year: 2015

In translational cancer medicine, implicated pathways and the relevant master genes are of focus. Exome's specificity, processing-time, and cost advantage makes it a compelling tool for this purpose. However, analysis of exome lacks reliable combinatory analysis tools and techniques. In this paper we present XomAnnotate - a meta- and functional-analysis software for exome. We compared UnifiedGenotyper, Freebayes, Delly, and Lumpy algorithms that were designed for whole-genome and combined their strengths in XomAnnotate for exome data through meta-analysis to identify comprehensive mutation profile (SNPs/SNVs, short inserts/deletes, and SVs) of patients. The mutation profile is annotated followed by functional analysis through pathway enrichment and network analysis to identify most critical genes and pathways implicated in the disease genesis. The efficacy of the software is verified through MDS and clustering and tested with available 11 familial non-BRCA1/BRCA2 breast cancer exome data. The results showed that the most significantly affected pathways across all samples are cell communication and antigen processing and presentation. ESCO1, HYAL1, RAF1 and PRKCA emerged as the key genes. Network analysis further showed the purine and propanotate metabolism pathways along with RAF1 and PRKCA genes to be master regulators in these patients. Therefore, XomAnnotate is able to use exome data to identify entire mutation landscape, pathways, and the master genes accurately with wide concordance from earlier microarray and whole-genome studies - making it a suitable biomedical software for using exome in nextgeneration translational medicine. © 2015 Talukder et al. Source


Iotti G.,Laboratory of Transcriptional Regulation in Development and Cancer | Mejetta S.,Laboratory of Transcriptional Regulation in Development and Cancer | Modica L.,Laboratory of Transcriptional Regulation in Development and Cancer | Penkov D.,Moscow State University | And 2 more authors.
PLoS ONE | Year: 2012

The Prep1 homeodomain transcription factor has recently been recognized as a tumor suppressor. Among other features, haploinsufficiency of Prep1 is able to strongly accelerate the B-lymphomagenesis in EμMyc mice. Now we report that this occurs concomitantly with a change in the type of B-cell lymphomas generated by the Myc oncogene. Indeed, the tumors generated in the EμMyc-Prep1+/- mice are much more immature, being mostly made up of Pro-B or Pre-B cells, while those in the EμMyc-Prep1+/+ mice are more differentiated being invariably IgM+. Moreover, we show that Prep1 is in fact required for the differentiation of Pro-B and Pre-B cells into IgM+ lymphocytes and/or their proliferation, thus showing also how a normal function of Prep1 affects EμMyc lymphomagenesis. Finally, we show that the haploinsufficiency of Prep1 is accompanied with a major decrease of Myc-induced apoptosis and that the haploinsufficieny is sufficient for all these effects because the second allele of Prep1 is not lost even at late stages. Therefore, the tumor-suppressive activity of Prep1 is intertwined with both the interference with Myc-induced apoptosis as well as with natural developmental functions of the protein. © 2012 Iotti et al. Source

Discover hidden collaborations