Time filter

Source Type

San Sebastián de los Reyes, Spain

Lopez de Maturana R.,Laboratory of Stem Cells and Neural Repair | Aguila J.C.,Laboratory of Stem Cells and Neural Repair | Sousa A.,Laboratory of Stem Cells and Neural Repair | Vazquez N.,Laboratory of Stem Cells and Neural Repair | And 8 more authors.
Neurobiology of Aging | Year: 2014

Inflammatory mechanisms are activated in aging and late-onset neurodegenerative diseases, such as Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both idiopathic and familial forms of PD. Here, we investigated the involvement of LRRK2 in inflammatory pathways using primary dermal fibroblasts from patients with 2 common mutations in LRRK2 (G2019S and R1441G), idiopathic PD and age-matched healthy individuals. Basal cyclooxygenase (COX)-2 RNA levels were very high in the fibroblasts of all patients. Remarkably, LRRK2 silencing experiments significantly reduced basal COX-2 levels and COX-2 induction after a pro-inflammatory stimulus. Additionally, in samples from patients with the R1441G mutation and with idiopathic PD, we found a prominent cytoplasmic re-distribution of human antigen R, a protein that, among others, stabilizes COX-2 RNA. Furthermore, the response to lipopolysaccharide was defective in these 2 groups, which showed weak induction of pro-inflammatory cytokines and reduced NFκB transcriptional activation. In summary, we describe multiple defects in inflammatory pathways in which LRRK2 appears to be critically involved. Further studies are required to establish the therapeutic implications of inflammatory dysregulation in the pathophysiology of Parkinson's disease. © 2014 Elsevier Inc.

Azkona G.,Animal Model Unit | Azkona G.,Laboratory of Stem Cells and Neural Repair | Azkona G.,Institute dinvestigacions Biomediques August Pi i Sunyer IDIBAPS | Sagarduy A.,University of the Basque Country | And 9 more authors.
Neuropharmacology | Year: 2014

Dopamine replacement with l-DOPA is the most effective therapy in Parkinson's disease. However, with chronic treatment, half of the patients develop an abnormal motor response including dyskinesias. The specific molecular mechanisms underlying dyskinesias are not fully understood. In this study, we used a well-characterized animal model to first establish the molecular differences between rats that did and did not develop dyskinesias. We then investigated the molecular substrates implicated in the anti-dyskinetic effect of buspirone, a 5HT1A partial agonist. Striatal protein expression profile of dyskinetic animals revealed increased levels of the dopamine receptor (DR)D3, ΔFosB and phospho (p)CREB, as well as an over-activation of the DRD1 signalling pathway, reflected by elevated ratios of phosphorylated DARPP32 and ERK2. Buspirone reduced the abnormal involuntary motor response in dyskinetic rats in a dose-dependent fashion. Buspirone (4 mg/kg) dramatically reduced the presence and severity of dyskinesias (by 83%) and normalized DARPP32 and ERK2 phosphorylation ratios, while the increases in DRD3, ΔFosB and pCREB observed in dyskinetic rats were not modified. Pharmacological experiments combining buspirone with 5HT1A and DRD3 antagonists confirmed that normalization of both pDARPP32 and pERK2 is required, but not sufficient, for blocking dyskinesias. The correlation between pDARPP32 ratio and dyskinesias was significant but not strong, pointing to the involvement of convergent factors and signalling pathways. Our results suggest that in dyskinetic rats DRD3 striatal over-expression could be instrumental in the activation of DRD1-downstream signalling and demonstrate that the anti-dyskinetic effect of buspirone in this model is correlated with DRD1 pathway normalization. © 2013 Elsevier Ltd. All rights reserved.

Aristieta A.,University of the Basque Country | Azkona G.,Laboratory of Stem Cells and Neural Repair | Sagarduy A.,University of the Basque Country | Miguelez C.,University of the Basque Country | And 3 more authors.
PLoS ONE | Year: 2012

L-DOPA is the most effective treatment for Parkinson's disease (PD), but prolonged use leads to disabling motor complications including dyskinesia. Strong evidence supports a role of the subthalamic nucleus (STN) in the pathophysiology of PD whereas its role in dyskinesia is a matter of controversy. Here, we investigated the involvement of STN in dyskinesia, using single-unit extracellular recording, behavioural and molecular approaches in hemi-parkinsonian rats rendered dyskinetic by chronic L-DOPA administration. Our results show that chronic L-DOPA treatment does not modify the abnormal STN activity induced by the 6-hydroxydopamine lesion of the nigrostriatal pathway in this model. Likewise, we observed a loss of STN responsiveness to a single L-DOPA dose both in lesioned and sham animals that received daily L-DOPA treatment. We did not find any correlation between the abnormal involuntary movement (AIM) scores and the electrophysiological parameters of STN neurons recorded 24 h or 20-120 min after the last L-DOPA injection, except for the axial subscores. Nonetheless, unilateral chemical ablation of the STN with ibotenic acid resulted in a reduction in global AIM scores and peak-severity of dyskinesia. In addition, STN lesion decreased the anti-dyskinetogenic effect of buspirone in a reciprocal manner. Striatal protein expression was altered in dyskinetic animals with increases in ΔFosB, phosphoDARPP-32, dopamine receptor (DR) D3 and DRD2/DRD1 ratio. The STN lesion attenuated the striatal molecular changes and normalized the DRD2/DRD1 ratio. Taken together, our results show that the STN plays a role, if modest, in the physiopathology of dyskinesias. © 2012 Aristieta et al.

Aguila J.C.,Laboratory of Stem Cells and Neural Repair | Hedlund E.,Karolinska Institutet | Sanchez-Pernaute R.,Laboratory of Stem Cells and Neural Repair
Stem Cells International | Year: 2012

Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate. Copyright © 2012 Julio C. Aguila et al.

Castano J.,University of Barcelona | Menendez P.,University of Barcelona | Menendez P.,Catalan Institution for Research and Advanced Studies | Bruzos-Cidon C.,University of the Basque Country | And 14 more authors.
Stem Cell Reports | Year: 2014

Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency. © 2014 The Authors.

Discover hidden collaborations