Laboratory of Pre Clinical and Translational Research

Rionero in Vulture, Italy

Laboratory of Pre Clinical and Translational Research

Rionero in Vulture, Italy
SEARCH FILTERS
Time filter
Source Type

Piccoli C.,University of Foggia | Piccoli C.,Laboratory of Pre Clinical and Translational Research | Agriesti F.,Laboratory of Pre Clinical and Translational Research | Scrima R.,University of Foggia | And 3 more authors.
British Journal of Pharmacology | Year: 2013

Adult haematopoietic stem/progenitor cells (HSPCs) constitute the lifespan reserve for the generation of all the cellular lineages in the blood. Although massive progress in identifying the cluster of master genes controlling self-renewal and multipotency has been achieved in the past decade, some aspects of the physiology of HSPCs still need to be clarified. In particular, there is growing interest in the metabolic profile of HSPCs in view of their emerging role as determinants of cell fate. Indeed, stem cells and progenitors have distinct metabolic profiles, and the transition from stem to progenitor cell corresponds to a critical metabolic change, from glycolysis to oxidative phosphorylation. In this review, we summarize evidence, reported in the literature and provided by our group, highlighting the peculiar ability of HSPCs to adapt their mitochondrial oxidative/bioenergetic metabolism to survive in the hypoxic microenvironment of the endoblastic niche and to exploit redox signalling in controlling the balance between quiescence versus active cycling and differentiation. Especial prominence is given to the interplay between hypoxia inducible factor-1, globins and NADPH oxidases in managing the mitochondrial dioxygen-related metabolism and biogenesis in HSPCs under different ambient conditions. A mechanistic model is proposed whereby 'mitochondrial differentiation' is a prerequisite in uncommitted stem cells, paving the way for growth/differentiation factor-dependent processes. Advancing the understanding of stem cell metabolism will, hopefully, help to (i) improve efforts to maintain, expand and manipulate HSPCsâ€..ex vivo and realize their potential therapeutic benefits in regenerative medicine; (ii) reprogramme somatic cells to generate stem cells; and (iii) eliminate, selectively, malignant stem cells. © 2013 The British Pharmacological Society.


Maddalena F.,Laboratory of Pre Clinical and Translational Research | Sisinni L.,Laboratory of Pre Clinical and Translational Research | Lettini G.,Laboratory of Pre Clinical and Translational Research | Condelli V.,Laboratory of Pre Clinical and Translational Research | And 5 more authors.
Molecular Oncology | Year: 2013

TRAP1 is a mitochondrial antiapoptotic protein up-regulated in several human malignancies. However, recent evidences suggest that TRAP1 is also localized in the endoplasmic reticulum (ER) where it is involved in ER stress protection and protein quality control of tumor cells. Based on the mechanistic link between ER stress, protection from apoptosis and drug resistance, we questioned whether these novel roles of TRAP1 are relevant for its antiapoptotic function. Here, we show for the first time that: i) TRAP1 expression is increased in about 50% of human breast carcinomas (BC), and ii) the ER stress protecting activity of TRAP1 is conserved in human tumors since TRAP1 is co-upregulated with the ER stress marker, BiP/Grp78. Notably, ER-associated TRAP1 modulates mitochondrial apoptosis by exerting a quality control on 18kDa Sorcin, a TRAP1 mitochondrial client protein involved in TRAP1 cytoprotective pathway. Furthermore, this TRAP1 function is relevant in favoring resistance to paclitaxel, a microtubule stabilizing/ER stress inducer agent widely used in BC therapy. Indeed, the transfection of a TRAP1 deletion mutant, whose localization is restricted to the ER, in shTRAP1 cells enhances the expression of mitochondrial Sorcin and protects from apoptosis induced by ER stress agents and paclitaxel. Furthermore, BC cells adapted to paclitaxel or ER stress inducers share common resistance mechanisms: both cell models exhibit cross-resistance to single agents and the inhibition of TRAP1 by siRNAs or gamitrinib, a mitochondria-directed HSP90 family inhibitor, in paclitaxel-resistant cells rescues the sensitivity to paclitaxel. These results support the hypothesis that ER-associated TRAP1 is responsible for an extramitochondrial control of apoptosis and, therefore, an interference of ER stress adaptation through TRAP1 inhibition outside of mitochondria may be considered a further compartment-specific molecular approach to rescue drug-resistance. © 2013 Federation of European Biochemical Societies.


Agriesti F.,University of Bologna | Agriesti F.,Laboratory of Pre clinical and Translational Research | Roncarati D.,University of Bologna | Musiani F.,University of Bologna | And 9 more authors.
Nucleic Acids Research | Year: 2014

Most transcriptional regulators bind nucleotide motifs in the major groove, although some are able to recognize molecular determinants conferred by the minor groove of DNA. Here we report a transcriptional commutator switch that exploits the alternative readout of grooves to mediate opposite output regulation for the same input signal. This mechanism accounts for the ability of the Helicobacter pylori Fur regulator to repress the expression of both iron-inducible and iron-repressible genes. When iron is scarce, Fur binds to DNA as a dimer, through the readout of thymine pairs in the major groove, repressing iron-inducible transcription (FeON). Conversely, on iron-repressible elements the metal ion acts as corepressor, inducing Fur multimerization with consequent minor groove readout of AT-rich inverted repeats (FeOFF). Our results provide first evidence for a novel regulatory paradigm, in which the discriminative readout of DNA grooves enables to toggle between the repression of genes in a mutually exclusive manner. © The Author(s) 2013.


D'Arena G.,Irccs Centro Of Riferimento Oncologico Della Basilicata | Guariglia R.,Irccs Centro Of Riferimento Oncologico Della Basilicata | La Rocca F.,Laboratory of Pre clinical and Translational Research | Trino S.,Laboratory of Pre clinical and Translational Research | And 4 more authors.
Clinical and Developmental Immunology | Year: 2013

The clinical course of chronic lymphocytic leukemia (CLL) may be complicated at any time by autoimmune phenomena.The most common ones are hematologic disorders, such as autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP). Pure red cell aplasia (PRCA) and autoimmune agranulocytosis (AG) are, indeed, more rarely seen. However, they are probably underestimated due to the possible misleading presence of cytopenias secondary to leukemic bone marrow involvement or to chemotherapy cytotoxicity. The source of autoantibodies is still uncertain, despite the most convincing data are in favor of the involvement of resting normal B-cells. In general, excluding the specific treatment of underlying CLL, the managementof these complications is not different from that of idiopathic autoimmune cytopenias or of those associated to other causes. Among different therapeutic approaches, monoclonal antibody rituximab, given alone or in combination, has shown to be very effective. © 2013 Giovanni D'Arena et al.


Ruggieri V.,Laboratory of Pre Clinical and Translational Research | Agriesti F.,Laboratory of Pre Clinical and Translational Research | Scrima R.,University of Foggia | Laurenzana I.,Laboratory of Pre Clinical and Translational Research | And 7 more authors.
Oncotarget | Year: 2015

Reprogramming of metabolism is a well-established property of cancer cells that is receiving growing attention as potential therapeutic target. Oral squamous cell carcinomas (OSCC) are aggressive and drugs-resistant human tumours displaying wide metabolic heterogeneity depending on their malignant genotype and stage of development. Dichloroacetate (DCA) is a specific inhibitor of the PDHregulator PDK proved to foster mitochondrial oxidation of pyruvate. In this study we tested comparatively the effects of DCA on three different OSCC-derived cell lines, HSC-2, HSC-3, PE15. Characterization of the three cell lines unveiled for HSC-2 and HSC-3 a glycolysis-reliant metabolism whereas PE15 accomplished an efficient mitochondrial oxidative phosphorylation. DCA treatment of the three OSCC cell lines, at pharmacological concentrations, resulted in stimulation of the respiratory activity and caused a remarkably distinctive pro-apoptotic/cytostatic effect on HSC-2 and HSC-3. This was accompanied with a large remodeling of the mitochondrial network, never documented before, leading to organelle fragmentation and with enhanced production of reactive oxygen species. The data here presented indicate that the therapeutic efficacy of DCA may depend on the specific metabolic profile adopted by the cancer cells with those exhibiting a deficient mitochondrial oxidative phosphorylation resulting more sensitive to the drug treatment.


Lettini G.,Laboratory of Pre Clinical and Translational Research
Cell Death and Differentiation | Year: 2016

Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics.Cell Death and Differentiation advance online publication, 23 September 2016; doi:10.1038/cdd.2016.67. © 2016 Macmillan Publishers Limited


Quarato G.,University of Foggia | Quarato G.,St Jude Childrens Research Hospital | Scrima R.,University of Foggia | Agriesti F.,Laboratory of Pre Clinical and Translational Research | And 3 more authors.
International Journal of Biochemistry and Cell Biology | Year: 2013

Hepatitis C virus (HCV) infection induces a state of oxidative stress more pronounced than that observed in many other inflammatory diseases. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca2+ from the endoplasmic reticulum, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen species and a progressive metabolic adaptive response. Evidence is provided for a positive feed-back mechanism between alterations of calcium and redox homeostasis. This likely involves deregulation of the mitochondrial permeability transition and induces progressive dysfunction of cellular bioenergetics. Pathogenetic implications of the model and new opportunities for therapeutic intervention are discussed. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy. © 2012 Elsevier Ltd.


Condelli V.,Laboratory of Pre Clinical and Translational Research | Maddalena F.,Laboratory of Pre Clinical and Translational Research | Sisinni L.,Laboratory of Pre Clinical and Translational Research | Lettini G.,Laboratory of Pre Clinical and Translational Research | And 6 more authors.
Oncotarget | Year: 2015

The HSP90 chaperone TRAP1 is translational regulator of BRAF synthesis/ ubiquitination, since BRAF down-regulation, ERK signaling inhibition and delay of cell cycle progression occur upon TRAP1 silencing/inhibition. Since TRAP1 is upregulated in human colorectal carcinomas (CRCs) and involved in protection from apoptosis and as human BRAF-driven CRCs are poorly responsive to anticancer therapies, the relationship between TRAP1 regulation of mitochondrial apoptotic pathway and BRAF antiapoptotic signaling has been further evaluated. This study reports that BRAF cytoprotective signaling involves TRAP1-dependent inhibition of the mitochondrial apoptotic pathway. It is worth noting that BRAF and TRAP1 interact and that the activation of BRAF signaling results in enhanced TRAP1 serine-phosphorylation, a condition associated with resistance to apoptosis. Consistently, a BRAF dominant-negative mutant prevents TRAP1 serine phosphorylation and restores drug sensitivity in BRAFV600E CRC drugresistant cells with high TRAP1 levels. In addition, TRAP1 targeting by the mitochondriadirected HSP90 chaperones inhibitor gamitrinib induces apoptosis and inhibits colony formation in BRAF-driven CRC cells. Thus, TRAP1 is a downstream effector of BRAF cytoprotective pathway in mitochondria and TRAP1 targeting may represent a novel strategy to improve the activity of proapoptotic agents in BRAF-driven CRC cells.


Condelli V.,Laboratory of Pre Clinical and Translational Research | Piscazzi A.,University of Foggia | Sisinni L.,Laboratory of Pre Clinical and Translational Research | Matassa D.S.,University of Naples Federico II | And 9 more authors.
Cancer Research | Year: 2014

Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-Mtransitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery. © 2014 American Association for Cancer Research.


Sisinni L.,Laboratory of Pre Clinical and Translational Research | Maddalena F.,Laboratory of Pre Clinical and Translational Research | Lettini G.,Laboratory of Pre Clinical and Translational Research | Condelli V.,Laboratory of Pre Clinical and Translational Research | And 3 more authors.
International Journal of Oncology | Year: 2014

Adaptation to endoplasmic reticulum (ER) stress through the upregulation of the ER chaperone BiP/Grp78 favors resistance of cancer cells to anthracyclins. We recently demonstrated that the mitochondrial HSP90 chaperone TNF receptor-associated protein 1 (TRAP1) is also localized in the ER, where it is responsible for protection from ER stress and quality control on specific mitochondrial proteins contributing to its anti-apoptotic function and the regulation of the mitochondrial apoptotic pathway. Based on the evidence that Bip/Grp78 and TRAP1 are co-upregulated in about 50% of human breast carcinomas (BCs), and considering that the expression of TRAP1 is critical in favoring resistant phenotypes to different antitumor agents, we hypothesized that ER-associated TRAP1 is also favoring resistance to anthracyclins. Indeed, anthracyclins induce ER stress in BC cells and cross-resistance between ER stress agents and anthracyclins was observed in bortezomib- and anthracyclin-resistant cells. Several lines of evidence suggest a mechanistic link between the ER-stress protecting function of TRAP1 and resistance to anthracyclins: i) ER stress- and anthracyclin-resistant cell lines are characterized by the upregulation of TRAP1; ii) TRAP1 silencing in both drug-resistant cell models restored the sensitivity to bortezomib and anthracyclins; iii) the transfection of a TRAP1 deletion mutant, whose localization is restricted to the ER, in TRAP1 KD cells protected from apoptosis induced by anthracyclins; iv) the disruption of the ER-associated TRAP1/TBP7 pathway by a TBP7 dominant negative deletion mutant re-established drug sensitivity in drug-resistant cells. This process is likely mediated by the ability of TRAP1 to modulate the PERK pathway as TRAP1 KD cells failed to induce the phosphorylation of PERK in response to anthracyclins. Moreover, the downregulation of TRAP1 in combination with ER stress agents produced high cytotoxic effects in BC cells. These results suggest that ER-associated TRAP1 plays a role in protecting tumor cells against DNA damaging agents by modulating the PERK pathway.

Loading Laboratory of Pre Clinical and Translational Research collaborators
Loading Laboratory of Pre Clinical and Translational Research collaborators