Time filter

Source Type

Ilk N.,Max Planck Institute for Plant Breeding Research | Ilk N.,Norwich Research Park | Ding J.,Max Planck Institute for Plant Breeding Research | Ihnatowicz A.,Laboratory of Plant Protection and Biotechnology | And 4 more authors.
New Phytologist | Year: 2015

Growing conditions combining high light intensities and low temperatures lead to anthocyanin accumulation in plants. This response was contrasted between two Arabidopsis thaliana accessions, which were used to decipher the genetic and molecular bases underlying the variation of this response. Quantitative trait loci (QTLs) for flowering time (FT) and anthocyanin accumulation under a high-light and low-temperature scenario versus a control environment were mapped. Major QTLs were confirmed using near-isogenic lines. Candidate genes were examined using mutants and gene expression studies as well as transgenic complementation. Several QTLs were found for FT and for anthocyanin content, of which one QTL co-located at the ENHANCER OF AG-4 2 (HUA2) locus. That HUA2 is a regulator of both pathways was confirmed by the analysis of loss-of-function mutants. For a strong expression of anthocyanin, additional allelic variation was detected for the PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2 genes which control the anthocyanin pathway. The genetic control of variation for anthocyanin content was dissected in A. thaliana and shown to be affected by a common regulator of flowering and anthocyanin biosynthesis together with anthocyanin-specific regulators. © 2014 New Phytologist Trust.

Krychowiak M.,Medical University of Gdańsk | Grinholc M.,Laboratory of Molecular Diagnostics | Banasiuk R.,Medical University of Gdańsk | Krauze-Baranowska M.,Medical University of Gdańsk | And 3 more authors.
PLoS ONE | Year: 2014

Staphylococcus aureus is the most common infectious agent involved in the development of skin infections that are associated with antibiotic resistance, such as burn wounds. As drug resistance is a growing problem it is essential to establish novel antimicrobials. Currently, antibiotic resistance in bacteria is successfully controlled by multi-drug therapies. Here we demonstrate that secondary metabolites present in the extract obtained from Drosera binata in vitro cultures are effective antibacterial agents against S. aureus grown in planktonic culture and in biofilm. Moreover, this is the first report demonstrating the synergistic interaction between the D. binata extract and silver nanoparticles (AgNPs), which results in the spectacular enhancement of the observed bactericidal activity, while having no cytotoxic effects on human keratinocytes. Simultaneous use of these two agents in significantly reduced quantities produces the same effect, i.e. by killing 99.9% of bacteria in inoculum or eradicating the staphylococcal biofilm, as higher amounts of the agents used individually. Our data indicates that combining AgNPs with either the D. binata extract or with its pure compound (3-chloroplumbagin) may provide a safe and highly effective alternative to commonly used antibiotics, which are ineffective towards the antibiotic-resistant S. aureus. © 2014 Krychowiak et al.

Rojek J.,University of Gdansk | Elzbieta K.,Jagiellonian University | Malgorzata K.,University of Gdansk | Ihnatowicz A.,Laboratory of Plant Protection and Biotechnology | Bohdanowicz J.,University of Gdansk
Acta Biologica Cracoviensia Series Botanica | Year: 2013

In flowering plants, seeds are produced both sexually (double fertilization is required) and asexually via apomixis (meiotic reduction and egg fertilization are omitted). An apomictic-like pattern of endosperm development in planta is followed by fis mutants of sexual Arabidopsis thaliana. In our experiments in planta, autonomous endosperm (AE) developed in met1 mutants. Furthermore we obtained autonomous endosperm formation in vitro not only in unfertilized ovules of fie mutants but also in wild genotypes (Col-0, MET1/MET1, FIE/FIE) and met1 mutants. AE induction and development occurred in all genotypes on the each of the media used and in every trial. The frequency of AE was relatively high (51.2% ovaries) and genotype-dependent. AE induced in vitro represents a more advanced stage of development than AE induced in fie mutants in planta. This was manifested by a high number of nuclei surrounded by cytoplasm and organized in nuclear cytoplasmic domains (NCDs), nodule formation, division into characteristic regions, and cellularization. The high frequency of AE observed in homozygous met1 (met1/met1) mutants probably is due to accumulation of hypomethylation as an effect of the met1 mutation and the in vitro conditions. AE development was most advanced in FIE/fie mutants. We suggest that changes in the methylation of one or several genes in the DNA of Arabidopsis genotypes caused by in vitro conditions resulted in AE induction and/or further AE development. © Polish Academy of Sciences and Jagiellonian University, Cracow 2013.

Loading Laboratory of Plant Protection and Biotechnology collaborators
Loading Laboratory of Plant Protection and Biotechnology collaborators