Time filter

Source Type

Jost C.,Laboratory STICC | Grandgeorge M.,Laboratory of Neurosciences | Le Pevedic B.,Laboratory STICC | Duhaut D.,Laboratory STICC
ACM/IEEE International Conference on Human-Robot Interaction

This paper presents an experiment which evaluated the added value of a robot in a memory game in three conditions: Tablet and robot, robot alone, and tablet alone. Results show that robots may increase game interest. In our experiment, the presence of a robot did not imply additional workload. It seems that people judged themselves more positively when they interacted with the robot. Moreover, people displayed more positive facial expressions with the robot. Source

Lee J.,Pusan National University | Jo D.-G.,Sungkyunkwan University | Park D.,Pusan National University | Chung H.Y.,Pusan National University | And 2 more authors.
Pharmacological Reviews

During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phyto-chemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examples of such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-kB, hypoxia-inducible factor 1a, peroxisome proliferator-activated receptor g, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Trans-lational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. Source

Okun E.,Bar - Ilan University | Griffioen K.J.,Laboratory of Neurosciences | Rothman S.,Laboratory of Neurosciences | Wan R.,Laboratory of Neurosciences | And 9 more authors.
Brain, Behavior, and Immunity

Toll-like receptors (TLR) are innate immune receptors typically activated by microbial-associated molecular patterns (MAMPs) during infection or damage-associated molecular patterns (DAMPs) as a result of tissue injury. Recent findings suggest that TLR2 and TLR4 signaling play important roles in developmental and adult neuroplasticity, and in learning and memory. In addition, activation of TLR2 and TLR4 worsens ischemic injury to the heart and brain in animal models of myocardial infarction and stroke. TLR activation is also implicated in thermoregulation and fever in response to infection. However, it is not known whether TLRs participate in the regulation of the sympathetic and/or parasympathetic components of the autonomic nervous system (ANS). Here we provide evidence that TLR2 and TLR4 influence autonomic regulation of heart rate (HR) body temperature and energy metabolism in mice. We show that mice lacking TLR2 or TLR4 exhibit reduced basal HR, which results from an increase of parasympathetic tone. In addition, thermoregulatory responses to stress are altered in TLR2-/- and TLR4-/- mice, and brown fat-dependent thermoregulation is altered in TLR4-/- mice. Moreover, TLR2-/- and TLR4-/- mice consume less food and exhibit a greater mass compared to wild type mice. Collectively, our findings suggest important roles for TLR2 and TLR4 in the ANS regulation of cardiovascular function, thermoregulation, and energy metabolism. © 2013 Elsevier Inc. Source

Kawamoto E.M.,University of Sao Paulo | Kawamoto E.M.,Laboratory of Neurosciences | Gleichmann M.,Laboratory of Neurosciences | Yshii L.M.,University of Sao Paulo | And 3 more authors.
Brazilian Journal of Medical and Biological Research

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 μM). Cells (1 × 106 cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases. Source

Discover hidden collaborations