Entity

Time filter

Source Type


Bandala C.,National Polytechnic Institute of Mexico | Floriano-Sanchez E.,National Polytechnic Institute of Mexico | Floriano-Sanchez E.,Laboratory of Biochemistry and Molecular Biology | Cardenas-Rodriguez N.,National Polytechnic Institute of Mexico | And 3 more authors.
Asian Pacific Journal of Cancer Prevention | Year: 2012

Involvement of cytochrome P450 genes (CYPs) in breast cancer (BCa) may differ between populations, with expression patterns affected by tumorigenesis. This may have an important role in the metabolism of anticancer drugs and in the progression of cancer. The aim of this study was to determine the mRNA expression patterns of four cytochrome P450 genes (CYP2W1, 3A5, 4F11 and 8A1) in Mexican women with breast cancer. Realtime PCR analyses were conducted on 32 sets of human breast tumors and adjacent non-tumor tissues, as well as 20 normal breast tissues. Expression levels were tested for association with clinical and pathological data of patients. We found higher gene expression of CYP2W1, CYP3A5, CYP4F11 in BCa than in adjacent tissues and only low in normal mammary glands in our Mexican population while CYP8A1 was only expressed in BCa and adjacent tissues. We found that Ki67 protein expression was associated with clinicopathological features as well as with CYP2W1, CYP4F11 and CYP8A1 but not with CYP3A5. The results indicated that breast cancer tissues may be better able to metabolize carcinogens and other xenobiotics to active species than normal or adjacent non-tumor tissues. Source


Lenzken S.C.,University of Milan Bicocca | Achsel T.,Catholic University of Leuven | Carri M.T.,Laboratory of Neurochemistry | Carri M.T.,University of Rome Tor Vergata | Barabino S.M.L.,University of Milan Bicocca
Wiley Interdisciplinary Reviews: RNA | Year: 2014

In mammalian cells in general and in neurons in particular, mRNA maturation, translation, and degradation are highly complex and dynamic processes. RNA-binding proteins (RBPs) play crucial roles in all these events. First, they participate in the choice of pre-mRNA splice sites and in the selection of the polyadenylation sites, determining which of the possible isoforms is produced from a given precursor mRNA. Then, once in the cytoplasm, the protein composition of the RNP particles determines whether the mature mRNA is transported along the dendrites or the axon of a neuron to the synapses, how efficiently it is translated, and how stable it is. In agreement with their importance for neuronal function, mutations in genes that code for RBPs are associated with various neurological diseases. In this review, we illustrate how individual RBPs determine the fate of an mRNA, and we discuss how mutations in RBPs or perturbations of the mRNA metabolism can cause neurodegenerative disorders. © 2014 John Wiley & Sons, Ltd. Source


Lenzken S.C.,University of Milan Bicocca | Romeo V.,University of Milan Bicocca | Zolezzi F.,University of Milan Bicocca | Cordero F.,University of Turin | And 13 more authors.
Human Mutation | Year: 2011

Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders including Parkinson, Alzheimer, and Amyotrophic Lateral Sclerosis (ALS). In addition, aberrant mRNA splicing has been documented in neurodegeneration. To characterize the cellular response to mitochondrial perturbations at the level of gene expression and alternative pre-mRNA splicing we used splicing-sensitive microarrays to profile human neuroblastoma SH-SY5Y cells treated with paraquat, a neurotoxic herbicide that induces the formation of reactive oxygen species and causes mitochondrial damage in animal models, and SH-SY5Y cells stably expressing the mutant G93A-SOD1 protein, one of the genetic causes of ALS. In both models we identified a common set of genes whose expression and alternative splicing are deregulated. Pathway analysis of the deregulated genes revealed enrichment in genes involved in neuritogenesis, axon growth and guidance, and synaptogenesis. Alterations in transcription and pre-mRNA splicing of candidate genes were confirmed experimentally in the cell line models as well as in brain and spinal cord of transgenic mice carrying the G93A-SOD1 mutation. Our findings expand the realm of the pathways implicated in neurodegeneration and suggest that alterations of axonal function may descend directly from mitochondrial damage. © 2011 Wiley-Liss, Inc. Source


Rossi S.,National Research Council Italy | Cozzolino M.,National Research Council Italy | Cozzolino M.,Laboratory of Neurochemistry | Carri M.T.,Laboratory of Neurochemistry | Carri M.T.,University of Rome Tor Vergata
Brain Pathology | Year: 2016

Amyotrophic Lateral Sclerosis (ALS) is recognized as a very complex disease. As we have learned in the past 20 years from studies in patients and in models based on the expression of mutant SOD1, ALS is not a purely motor neuron disease as previously thought. While undoubtedly motor neurons are lost in patients, a number of alterations in those cell-types that interact functionally with motor neurons (astrocytes, microglia, muscle fibers, oligodendrocytes) take place even long before onset of symptoms. At the same time, disturbance of several, only partly inter-related physiological functions play some role in the onset and progression of the disease. Traditionally, mitochondrial damage and oxidative stress, excitotoxicity, neuroinflammation, altered axonal transport, ER stress, protein aggregation and defective removal of toxic proteins have been considered as key factors in the pathogenesis of ALS, with the relatively recent addition of disturbances in RNA metabolism. This complexity makes the search for an effective treatment extremely difficult and prompts further studies to reveal other possible, previously unappreciated aspects of the pathogenesis of ALS. In this review, we focus on previous knowledge on ALS mechanisms as well as new facets emerging from studies on genetic ALS patients and models that may both provide precious information for a novel therapeutic approach. © 2016 International Society of Neuropathology. Source


Ferraro E.,Laboratory of Molecular Neuroembryology | Ferraro E.,University of Rome Tor Vergata | Ferraro E.,Laboratory of skeletal muscle development and metabolism | Pesaresi M.G.,Laboratory of Neurochemistry | And 11 more authors.
Journal of Cell Science | Year: 2011

The apoptotic protease activating factor 1 (Apaf1) is the main component of the apoptosome, and a crucial factor in the mitochondriadependent death pathway. Here we show that Apaf1 plays a role in regulating centrosome maturation. By analyzing Apaf1-depleted cells, we have found that Apaf1 loss induces centrosome defects that impair centrosomal microtubule nucleation and cytoskeleton organization. This, in turn, affects several cellular processes such as mitotic spindle formation, cell migration and mitochondrial network regulation. As a consequence, Apaf1-depleted cells are more fragile and have a lower threshold to stress than wild-type cells. In fact, we found that they exhibit low Bcl-2 and Bcl-X L expression and, under apoptotic treatment, rapidly release cytochrome c. We also show that Apaf1 acts by regulating the recruitment of HCA66, with which it interacts, to the centrosome. This function of Apaf1 is carried out during the cell life and is not related to its apoptotic role. Therefore, Apaf1 might also be considered a pro-survival molecule, whose absence impairs cell performance and causes a higher responsiveness to stressful conditions. © 2011. Source

Discover hidden collaborations