Laboratory of Malaria and Vector Research and

Laboratory of Malaria and Vector Research and

SEARCH FILTERS
Time filter
Source Type

PubMed | University of Victoria, Laboratory of Malaria and Vector Research and, Laboratory Of Malaria And Vector Research And Lmiller@Niaidnihgov and U.S. National Institutes of Health
Type: Journal Article | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

An essential step in the invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) merozoites is the binding of rhoptry neck protein 2 (RON2) to the hydrophobic groove of apical membrane antigen 1 (AMA1), triggering junction formation between the apical end of the merozoite and the RBC surface to initiate invasion. Vaccination with AMA1 provided protection against homologous parasites in one of two phase 2 clinical trials; however, despite its ability to induce high-titer invasion-blocking antibodies in a controlled human challenge trial, the vaccine conferred little protection even against the homologous parasite. Here we provide evidence that immunization with an AMA1-RON2 peptide complex, but not with AMA1 alone, provided complete protection against a lethal Plasmodium yoelii challenge in mice. Significantly, IgG from mice immunized with the complex transferred protection. Furthermore, IgG from PfAMA1-RON2-immunized animals showed enhanced invasion inhibition compared with IgG elicited by AMA1 alone. Interestingly, this qualitative increase in inhibitory activity appears to be related, at least in part, to a switch in the proportion of IgG specific for certain loop regions in AMA1 surrounding the binding site of RON2. Antibodies induced by the complex were not sufficient to block the FVO strain heterologous parasite, however, reinforcing the need to include multiallele AMA1 to cover polymorphisms. Our results suggest that AMA1 subunit vaccines may be highly effective when presented to the immune system as an invasion complex with RON2.

Loading Laboratory of Malaria and Vector Research and collaborators
Loading Laboratory of Malaria and Vector Research and collaborators