Time filter

Source Type

Wang Z.,Capital Medical University | Xia M.,Beijing Normal University | Dai Z.,Beijing Normal University | Liang X.,Beijing Normal University | And 4 more authors.
Brain Structure and Function | Year: 2013

Recent research on Alzheimer's disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD. © 2013 Springer-Verlag Berlin Heidelberg.

Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics | Liang P.,Key Laboratory for Neurodegenerative Diseases | Jia X.,Capital Medical University | And 8 more authors.
International Journal of Psychophysiology | Year: 2014

Neural correlate of human inductive reasoning process is still unclear. Number series and letter series completion are two typical inductive reasoning tasks, and with a common core component of rule induction. Previous studies have demonstrated that different strategies are adopted in number series and letter series completion tasks; even the underlying rules are identical. In the present study, we examined cortical activation as a function of two different reasoning strategies for solving series completion tasks. The retrieval strategy, used in number series completion tasks, involves direct retrieving of arithmetic knowledge to get the relations between items. The procedural strategy, used in letter series completion tasks, requires counting a certain number of times to detect the relations linking two items. The two strategies require essentially the equivalent cognitive processes, but have different working memory demands (the procedural strategy incurs greater demands). The procedural strategy produced significant greater activity in areas involved in memory retrieval (dorsolateral prefrontal cortex, DLPFC) and mental representation/maintenance (posterior parietal cortex, PPC). An ACT-R model of the tasks successfully predicted behavioral performance and BOLD responses. The present findings support a general-purpose dual-process theory of inductive reasoning regarding the cognitive architecture. © 2014 Elsevier B.V.

Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics | Liang P.,Key Laboratory for Neurodegenerative Diseases | Xiang J.,Taiyuan University of Technology | And 7 more authors.
Current Alzheimer Research | Year: 2014

Purpose: Previous studies have shown that the strength of the low frequency fluctuation in the medial-line brain areas are abnormally reduced in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. The purpose of this study was to explore the functional brain changes in early MCI (EMCI) and late MCI (LMCI) patients by measuring the amplitude of the blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest. Materials and methods: 35 elderly normal controls (NC), 24 EMCI, 29 LMCI, and 14 AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI2) were included in this study. Resting state fMRI and 3D structural MRI data were acquired. The spatial patterns of spontaneous brain activity were measured by examining the amplitude of low-frequency fluctuations (ALFF) of BOLD signal during rest. A one-way analysis of variance (ANOVA) was then performed on ALFF maps, with age, sex and regional atrophy as covariates. Results: There were widespread ALFF differences among the four groups. As compared with controls, AD, LMCI and EMCI patients showed decreased ALFF mainly in the posterior cingulate cortex, precuneus, right lingual gyrus and thalamus (with a linear trend: NC>EMCI>LMCI>AD), while there was increased activity in the right parahippocampal gyrus (with a linear trend: NC

Wang Z.,Capital Medical University | Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics | Zhao Z.,Capital Medical University | And 7 more authors.
PLoS ONE | Year: 2014

Our objective is to clarify the effects of acupuncture on hippocampal connectivity in patients with Alzheimer disease (AD) using functional magnetic resonance imaging (fMRI). Twenty-eight right-handed subjects (14 AD patients and 14 healthy elders) participated in this study. Clinical and neuropsychological examinations were performed on all subjects. MRI was performed using a SIEMENS verio 3-Tesla scanner. The fMRI study used a single block experimental design. We first acquired baseline resting state data during the initial 3 minutes and then performed acupuncture stimulation on the Tai chong and He gu acupoints for 3 minutes. Last, we acquired fMRI data for another 10 minutes after the needle was withdrawn. The preprocessing and data analysis were performed using statistical parametric mapping (SPM5) software. Two-sample t-tests were performed using data from the two groups in different states. We found that during the resting state, several frontal and temporal regions showed decreased hippocampal connectivity in AD patients relative to control subjects. During the resting state following acupuncture, AD patients showed increased connectivity in most of these hippocampus related regions compared to the first resting state. In conclusion, we investigated the effect of acupuncture on AD patients by combing fMRI and traditional acupuncture. Our fMRI study confirmed that acupuncture at Tai chong and He gu can enhance the hippocampal connectivity in AD patients.

Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics | Liang P.,Key Laboratory for Neurodegenerative Diseases | Li Z.,Georgia Institute of Technology | And 8 more authors.
PLoS ONE | Year: 2014

Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI) have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE), and California verbal learning test (CVLT) scores. When the whole-brain signal averaged over the entire brain was used as a nuisance covariate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease. © 2014 Liang et al.

Wang Y.,Beijing University of Technology | Ji J.,Beijing University of Technology | Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics
Journal of X-Ray Science and Technology | Year: 2016

Pattern classification has been increasingly used in functional magnetic resonance imaging (fMRI) data analysis. However, the classification performance is restricted by the high dimensional property and noises of the fMRI data. In this paper, a new feature selection method (named as "NMI-F") was proposed by sequentially combining the normalized mutual information (NMI) and fisher discriminant ratio. In NMI-F, the normalized mutual information was firstly used to evaluate the relationships between features, and fisher discriminant ratio was then applied to calculate the importance of each feature involved. Two fMRI datasets (task-related and resting state) were used to test the proposed method. It was found that classification base on the NMI-F method could differentiate the brain cognitive and disease states effectively, and the proposed NMI-F method was prior to the other related methods. The current results also have implications to the future studies. © 2016 - IOS Press and the authors. All rights reserved.

Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics | Wang Z.,Capital Medical University | Qian T.,Siemens AG | And 3 more authors.
American Journal of Alzheimer's Disease and other Dementias | Year: 2014

Objectives: The acupuncture has been used in the therapy of Alzheimer disease (AD), however, its neural underpins are still unclear. The aim of this study is to examine the acupuncture effect on the default mode network (DMN) in AD by using resting state functional magnetic resonance imaging (RS-fMRI).Methods: Twenty-eight subjects (14 AD and 14 normal controls (NC)) participated in this study. RS-fMRI data were acquired before and after acupuncture, while during the acupuncture, the procession of acupuncture stimulation on the acupoints of Tai chong (Liv3) and Hegu (LI4) lasted for 3 minutes.Results: Region of interest analysis showed that the impaired DMN connectivity in AD (identified by comparing the pre-acupuncture RS-fMRI of AD and NC), specifically the left cingulate gyrus (CG) and right inferior parietal lobule (IPL), were significantly changed for the better. The whole-brain exploratory analysis further demonstrated these results and found some new regions respond to the acupuncture effect on AD, with a cluster in the left posterior cingulate cortex (PCC), the right middle temporal gyrus (MTG) together with right IPL showed increased within-DMN connectivity; and the bilateral CG and left PCu showed decreased within-DMN connectivity. Moreover, the acupuncture effect on the right MTG was significantly correlated with disease severity as measured by Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores.Conclusion: It was found that the acupuncture stimulation could modulate the DMN activity in AD. The current findings suggest that the acupuncture treatment on the relative earlier ADpatientsmight have a better therapy effect. © The Author(s) 2014.

PubMed | Siemens AG, Capital Medical University, Beijing Neurosurgical Institute and Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics
Type: | Journal: Clinical physiology and functional imaging | Year: 2015

Functional magnetic resonance imaging (fMRI) mapping can present the activated cortical area during movement, while little is known about precise location in facial and tongue movements.To investigate the representation of facial and tongue movements by task fMRI.Twenty right-handed healthy subjects were underwent block design task fMRI examination. Task movements included lip pursing, cheek bulging, grinning and vertical tongue excursion. Statistical parametric mapping (SPM8) was applied to analysis the data.One-sample t-test was used to calculate the common activation area between facial and tongue movements. Also, paired t-test was used to test for areas of over- or underactivation in tongue movement compared with each group of facial movements.The common areas within facial and tongue movements suggested the similar motor circuits of activation in both movements. Prior activation in tongue movement was situated laterally and inferiorly in sensorimotor area relative to facial movements. Prior activation of tongue movement was investigated in left superior parietal lobe relative to lip pursing. Also, prior activation in bilateral cuneus lobe in grinning compared with tongue movement was detected.

Wang Z.,Capital Medical University | Wang J.,Pennsylvania State University | Zhang H.,Hangzhou Normal University | Mchugh R.,Pennsylvania State University | And 4 more authors.
PLoS ONE | Year: 2015

Neuroimaging studies have demonstrated that patients with Alzheimer's disease presented disconnection syndrome. However, little is known about the alterations of interhemispheric functional interactions and underlying structural connectivity in the AD patients. In this study, we combined resting-state functional MRI and diffusion tensor imaging (DTI) to investigate interhemispheric functional and structural connectivity in 16 AD, 16 mild cognitive impairment (MCI), as well as 16 cognitive normal healthy subjects (CN). The pattern of the resting state interhemispheric functional connectivity was measured with a voxel-mirrored homotopic connectivity (VMHC) method. Decreased VMHC was observed in AD and MCI subjects in anterior brain regions including the prefrontal cortices and subcortical regions with a pattern of AD

Liu X.L.,Carnegie Mellon University | Liang P.,Capital Medical University | Liang P.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics | Li K.,Capital Medical University | And 2 more authors.
PLoS ONE | Year: 2014

People learn better when re-study opportunities are replaced with tests. While researchers have begun to speculate on why testing is superior to study, few studies have directly examined the neural underpinnings of this effect. In this fMRI study, participants engaged in a study phase to learn arbitrary word pairs, followed by a cued recall test (recall second half of pair when cued with first word of pair), re-study of each pair, and finally another cycle of cued recall tests. Brain activation patterns during the first test (recall) of the studied pairs predicts performance on the second test. Importantly, while subsequent memory analyses of encoding trials also predict later accuracy, the brain regions involved in predicting later memory success are more extensive for activity during retrieval (testing) than during encoding (study). Those additional regions that predict subsequent memory based on their activation at test but not at encoding may be key to understanding the basis of the testing effect. © 2014 Liu et al.

Loading Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics collaborators
Loading Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics collaborators