Entity

Time filter

Source Type


Zuccolo E.,University of Pavia | Bottino C.,University of Pavia | Diofano F.,University of Pavia | Poletto V.,Research Laboratory of Biotechnology | And 11 more authors.
Stem Cells and Development | Year: 2016

Clonal endothelial progenitor cells (EPCs) have been implicated in the aberrant vascular growth that features infantile hemangioma (IH), the most common benign vascular tumor in childhood that may cause ulceration, bleeding, and/or permanent disfigurement. Endothelial colony-forming cells (ECFCs), truly endothelial EPCs endowed with clonal ability and capable of forming patent vessels in vivo, remodel their Ca2+ toolkit in tumor-derived patients to acquire an adaptive advantage. Particularly, they upregulate the proangiogenic store-operated Ca2+ entry (SOCE) pathway due to the overexpression of its underlying components, that is, stromal interaction molecule 1 (Stim1), Orai1, and transient receptor potential canonical 1 (TRPC1). The present work was undertaken to assess whether and how the Ca2+ signalosome is altered in IH-ECFCs by employing Ca2+ and nitric oxide (NO) imaging, real-time polymerase chain reaction, western blotting, and functional assays. IH-ECFCs display a lower intracellular Ca2+ release in response to either pharmacological (i.e., cyclopiazonic acid) or physiological (i.e., ATP and vascular endothelial growth factor) stimulation. Conversely, Stim1, Orai1, and TRPC1 transcripts and proteins are normally expressed in these cells and mediate a constitutive SOCE, which is sensitive to BTP-2, La3+, and Pyr6 and recharges the intracellular Ca2+ pool. The resting SOCE in IH-ECFCs is also associated to an increase in their proliferation rate and the basal production of NO compared to normal cells. Likewise, the pharmacological blockade of SOCE and NO synthesis block IH-ECFC growth. Collectively, these data indicate that the constitutive SOCE activation enhances IH-ECFC proliferation by augmenting basal NO production and sheds novel light on the molecular mechanisms of IH. © Copyright 2016, Mary Ann Liebert, Inc. 2016. Source


Dragoni S.,University of Pavia | Turin I.,Laboratory of Immunology Transplantation | Laforenza U.,University of Pavia | Potenza D.M.,University of Pavia | And 16 more authors.
BioMed Research International | Year: 2014

Store-operated Ca2+ entry (SOCE) is activated following depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pool to regulate proliferation in immortalized cell lines established from either primary or metastatic lesions. The molecular nature of SOCE may involve both Stim1, which senses Ca2+ levels within the endoplasmic reticulum (ER) Ca2+ reservoir, and a number of a Ca 2+-permeable channels on the plasma membrane, including Orai1, Orai3, and members of the canonical transient receptor (TRPC1-7) family of ion channels. The present study was undertaken to assess whether SOCE is expressed and controls proliferation in primary cultures isolated from secondary lesions of heavily pretreated metastatic renal cell carcinoma (mRCC) patients. SOCE was induced following pharmacological depletion of the ER Ca2+ store, but not by InsP3-dependent Ca2+ release. Metastatic RCC cells express Stim1-2, Orai1-3, and TRPC1-7 transcripts and proteins. In these cells, SOCE was insensitive to BTP-2, 10 μM Gd3+ and Pyr6, while it was inhibited by 100 μM Gd3+, 2-APB, and carboxyamidotriazole (CAI). Neither Gd3+ nor 2-APB or CAI impaired mRCC cell proliferation. Consistently, no detectable Ca2+ signal was elicited by growth factor stimulation. Therefore, a functional SOCE is expressed but does not control proliferation of mRCC cells isolated from patients resistant to multikinase inhibitors. © 2014 Silvia Dragoni et al. Source

Discover hidden collaborations