Laboratory of, United States
Laboratory of, United States

Time filter

Source Type

Shan J.,Laboratory of Genetic Medicine and Immunology | DSouza S.P.,Laboratory of Genetic Medicine and Immunology | Bakhru S.,Brown University | Al-Azwani E.K.,Genomics Core | And 14 more authors.
Cancer Research | Year: 2013

Although the linkage between germline mutations of BRCA1 and hereditary breast/ovarian cancers is well established, recent evidence suggests that altered expression of wild-type BRCA1 might contribute to the sporadic forms of breast cancer. The breast cancer gene trinucleotide-repeat-containing 9 (TNRC9; TOX3) has been associated with disease susceptibility but its function is undetermined. Here, we report that TNRC9 is often amplified and overexpressed in breast cancer, particularly in advanced breast cancer. Gene amplification was associated with reduced disease-free and metastasis-free survival rates. Ectopic expression of TNRC9 increased breast cancer cell proliferation, migration, and survival after exposure to apoptotic stimuli. These phenotypes were associated with tumor progression in a mouse model of breast cancer. Gene expression profiling, protein analysis, and in silico assays of large datasets of breast and ovarian cancer samples suggested that TNRC9 and BRCA1 expression were inversely correlated. Notably, we found that TNRC9 bound to both the BRCA1 promoter and the cAMP-responsive element-binding protein (CREB) complex, a regulator of BRCA1 transcription. In support of this connection, expression of TNRC9 downregulated expression of BRCA1 by altering the methylation status of its promoter. Our studies unveil a function for TNRC9 in breast cancer that highlights a new paradigm in BRCA1 regulation. Cancer Res; 73(9); 2840-9. © 2013 AACR.


PubMed | Hotel Dieu Of France University Hospital Beirut, Sidra Medical & Research Center, Laboratory of Genetic Medicine and Immunology, Research office and 3 more.
Type: Journal Article | Journal: BMC genetics | Year: 2017

Hyaline fibromatosis syndrome (HFS) is a recently introduced alternative term for two disorders that were previously known as juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH). These two variants are secondary to mutations in the anthrax toxin receptor 2 gene (ANTXR2) located on chromosome 4q21. The main clinical features of both entities include papular and/or nodular skin lesions, gingival hyperplasia, joint contractures and osteolytic bone lesions that appear in the first few years of life, and the syndrome typically progresses with the appearance of new lesions.We describe five Lebanese patients from one family, aged between 28 and 58years, and presenting with nodular and papular skin lesions, gingival hyperplasia, joint contractures and bone lesions. Because of the particular clinical features and the absence of a clinical diagnosis, Whole Genome Sequencing (WGS) was carried out on DNA samples from the proband and his parents.A mutation in ANTXR2 (p. Gly116Val) that yielded a diagnosis of HFS was noted.The main goal of this paper is to add to the knowledge related to the clinical and radiographic aspects of HFS in adulthood and to show the importance of Next-Generation Sequencing (NGS) techniques in resolving such puzzling cases.

Loading Laboratory of Genetic Medicine and Immunology collaborators
Loading Laboratory of Genetic Medicine and Immunology collaborators