Time filter

Source Type

Brasília, Brazil

Wurth R.,University of Genoa | Pattarozzi A.,University of Genoa | Gatti M.,University of Genoa | Bajetto A.,University of Genoa | And 12 more authors.
Cell Cycle | Year: 2013

Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. © 2013 Landes Bioscience. Source

Bajetto A.,University of Genoa | Porcile C.,University of Molise | Pattarozzi A.,University of Genoa | Scotti L.,University of Chieti Pescara | And 4 more authors.
Journal of Biological Regulators and Homeostatic Agents | Year: 2013

Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs. Copyright © by BIOLIFE, s.a.s. Source

Murad A.M.,Laboratory of Gene Transfer | Souza G.H.M.F.,Research Applications Corporation | Garcia J.S.,Federal University of Alfenas | Rech E.L.,Laboratory of Gene Transfer
Journal of Separation Science | Year: 2011

The use of mass spectrometry to identify recombinant proteins that are expressed in total soluble proteins (TSPs) from plant extracts is necessary to accelerate further processing steps. For example, the method consists of TSP sample preparation and trypsin digestion prior to the preliminary characterization using nanoUPLC-MS E analysis of the recombinant proteins that are expressed in TSP samples of transgenic soybean seeds. A TSP sample as small as 50μg can be effectively analyzed. In this study, transgenic soybean seeds that expressed recombinant cancer testis antigen (CTAG) were used. The procedure covered 30% of the protein sequence and was quantified at 0.26ng, which corresponded to 0.1% of the TSP sample. A comparative proteomic profile was generated by the comparison of a negative control and sample that showed a unique expression pattern of CTAG in a transgenic line. The experimental data from the TSP extraction, sample preparation and data analysis are discussed herein. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Rech E.L.,Laboratory of Gene Transfer
Seed Science Research | Year: 2012

There is a worldwide consensus that the production of food, biomolecules and bioenergy should be sustainably intensified within the next decades. To achieve these goals will depend on the intensification of current practices in agricultural systems fused with a wider understanding and acceptance of genomics, metabolomics, synthetic biology and metabolic engineering. However, genetically modified-derived crops, including commodities and non-commodities, may contribute to establishing a new parameter in the agricultural, pharmaceutical and industrial sectors. Seeds will also play an important role in allowing large-scale production of innovative molecules prospected from biodiversity. © 2012 Cambridge University Press. Source

Discover hidden collaborations